These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30508317)
1. The Effective Conjugation Length Is Responsible for the Red/Green Spectral Tuning in the Cyanobacteriochrome Slr1393g3. Wiebeler C; Rao AG; Gärtner W; Schapiro I Angew Chem Int Ed Engl; 2019 Feb; 58(7):1934-1938. PubMed ID: 30508317 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15-E,anti Chromophore in the Photoproduct. Rockwell NC; Martin SS; Lim S; Lagarias JC; Ames JB Biochemistry; 2015 Jun; 54(24):3772-83. PubMed ID: 25989712 [TBL] [Abstract][Full Text] [Related]
4. Conserved phenylalanine residues are required for blue-shifting of cyanobacteriochrome photoproducts. Rockwell NC; Martin SS; Gulevich AG; Lagarias JC Biochemistry; 2014 May; 53(19):3118-30. PubMed ID: 24766217 [TBL] [Abstract][Full Text] [Related]
5. Red, Orange, Green: Light- and Temperature-Dependent Color Tuning in a Cyanobacteriochrome. Buhrke D; Battocchio G; Wilkening S; Blain-Hartung M; Baumann T; Schmitt FJ; Friedrich T; Mroginski MA; Hildebrandt P Biochemistry; 2020 Feb; 59(4):509-519. PubMed ID: 31840994 [TBL] [Abstract][Full Text] [Related]
6. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. Song C; Narikawa R; Ikeuchi M; Gärtner W; Matysik J J Phys Chem B; 2015 Jul; 119(30):9688-95. PubMed ID: 26115331 [TBL] [Abstract][Full Text] [Related]
7. Computational identification of key residues regulating fluorescence emission in a red/green cyanobacteriochrome. Kannan P; Oh J; Yeon YJ; Park YI; Seo MH; Park K Proteins; 2024 Jan; 92(1):106-116. PubMed ID: 37646483 [TBL] [Abstract][Full Text] [Related]
8. Photocycle of a cyanobacteriochrome: a charge defect on ring Köhler L; Gärtner W; Salvan G; Matysik J; Wiebeler C; Song C Chem Sci; 2023 Jun; 14(23):6295-6308. PubMed ID: 37325146 [TBL] [Abstract][Full Text] [Related]
9. 1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Lim S; Yu Q; Rockwell NC; Martin SS; Lagarias JC; Ames JB Biomol NMR Assign; 2016 Apr; 10(1):157-61. PubMed ID: 26537963 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Protonated Bilin Ring System in Both Photostates. Rockwell NC; Martin SS; Lim S; Lagarias JC; Ames JB Biochemistry; 2015 Apr; 54(16):2581-600. PubMed ID: 25843271 [TBL] [Abstract][Full Text] [Related]
11. Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. Fushimi K; Narikawa R Adv Exp Med Biol; 2021; 1293():167-187. PubMed ID: 33398813 [TBL] [Abstract][Full Text] [Related]
12. Histidine protonation controls structural heterogeneity in the cyanobacteriochrome AnPixJg2. Rao AG; Wiebeler C; Sen S; Cerutti DS; Schapiro I Phys Chem Chem Phys; 2021 Mar; 23(12):7359-7367. PubMed ID: 33876095 [TBL] [Abstract][Full Text] [Related]
13. NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning. Rockwell NC; Martin SS; Gan F; Bryant DA; Lagarias JC Photochem Photobiol Sci; 2015 Feb; 14(2):258-69. PubMed ID: 25342233 [TBL] [Abstract][Full Text] [Related]
15. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156 [TBL] [Abstract][Full Text] [Related]
16. Evidence for an early green/red photocycle that precedes the diversification of GAF domain photoreceptor cyanobacteriochromes. Priyadarshini N; Steube N; Wiens D; Narikawa R; Wilde A; Hochberg GKA; Enomoto G Photochem Photobiol Sci; 2023 Jun; 22(6):1415-1427. PubMed ID: 36781703 [TBL] [Abstract][Full Text] [Related]
17. A photoproduct of DXCF cyanobacteriochromes without reversible Cys ligation is destabilized by rotating ring twist of the chromophore. Fushimi K; Matsunaga T; Narikawa R Photochem Photobiol Sci; 2020 Oct; 19(10):1289-1299. PubMed ID: 32789394 [TBL] [Abstract][Full Text] [Related]
18. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277 [TBL] [Abstract][Full Text] [Related]
19. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Ishizuka T; Narikawa R; Kohchi T; Katayama M; Ikeuchi M Plant Cell Physiol; 2007 Sep; 48(9):1385-90. PubMed ID: 17715149 [TBL] [Abstract][Full Text] [Related]
20. Structural elements regulating the photochromicity in a cyanobacteriochrome. Xu X; Port A; Wiebeler C; Zhao KH; Schapiro I; Gärtner W Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2432-2440. PubMed ID: 31964827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]