These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 30508727)

  • 1. Theoretical and experimental investigations of ultrasonic sound fields in thin bubbly liquid layers for ultrasonic cavitation peening.
    Bai F; Long Y; Saalbach KA; Twiefel J
    Ultrasonics; 2019 Mar; 93():130-138. PubMed ID: 30508727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capability evaluation of ultrasonic cavitation peening at different standoff distances.
    Bai F; Saalbach KA; Long Y; Twiefel J; Wallaschek J
    Ultrasonics; 2018 Mar; 84():38-44. PubMed ID: 29073486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of time on ultrasonic cavitation peening via detection of surface plastic deformation.
    Bai F; Saalbach KA; Wang L; Wang X; Twiefel J
    Ultrasonics; 2018 Mar; 84():350-355. PubMed ID: 29232591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonic cavitation at liquid/solid interface in a thin Ga-In liquid layer with free surface.
    Li Z; Xu Z; Zhao D; Chen S; Yan J
    Ultrason Sonochem; 2021 Mar; 71():105356. PubMed ID: 33049423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.
    Vanhille C; Campos-Pozuelo C
    Ultrason Sonochem; 2009 Jun; 16(5):669-85. PubMed ID: 19171496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of cavitation shock wave emission in the thin liquid layer by power ultrasonic vibratory machining.
    Gong T; Zhu X; Ye L; Fu Y
    Sci Rep; 2024 Jul; 14(1):16956. PubMed ID: 39043923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel inner surface enhancement method for holes utilizing ultrasonic cavitation.
    Bai F; Wang L; Yang K; He Z; Liu C; Twiefel J
    Ultrasonics; 2021 Aug; 115():106453. PubMed ID: 33932642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring derived acoustic power of an ultrasound surgical device in the linear and nonlinear operating modes.
    Petosić A; Ivancević B; Svilar D
    Ultrasonics; 2009 Jun; 49(6-7):522-31. PubMed ID: 19217636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part II: Application to ultrasonic cavitation.
    Trujillo FJ
    Ultrason Sonochem; 2020 Jul; 65():105056. PubMed ID: 32172147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical detection of the ultrasonic cavitation onset.
    Campos-Pozuelo C; Vanhille C
    Ultrason Sonochem; 2012 Nov; 19(6):1266-70. PubMed ID: 22579800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part I: Cavitation characteristics.
    Li Z; Xu Z; Ma L; Wang S; Liu X; Yan J
    Ultrason Sonochem; 2018 Dec; 49():249-259. PubMed ID: 30146471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and Analytical Study of under Water Pressure Wave Induced by the Implosion of a Bubble Generated by Focused Laser.
    Han Z; Mauger C; Chaise T; Elguedj T; Arrigoni M; El Hajem M; Boisson N
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number.
    Jamshidi R; Brenner G
    Ultrasonics; 2013 Apr; 53(4):842-8. PubMed ID: 23290824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging and analysis of individual cavitation microbubbles around dental ultrasonic scalers.
    Vyas N; Dehghani H; Sammons RL; Wang QX; Leppinen DM; Walmsley AD
    Ultrasonics; 2017 Nov; 81():66-72. PubMed ID: 28595164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of frequency domain and time domain methods for the numerical simulation of contactless ultrasonic cavitation.
    Beckwith C; Djambazov G; Pericleous K; Tonry C
    Ultrason Sonochem; 2022 Sep; 89():106138. PubMed ID: 36049449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields.
    Kauer M; Belova-Magri V; Cairós C; Schreier HJ; Mettin R
    Ultrason Sonochem; 2017 Jan; 34():474-483. PubMed ID: 27773271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rod-shaped cavitation bubble structure in ultrasonic field.
    Bai L; Wu P; Liu H; Yan J; Su C; Li C
    Ultrason Sonochem; 2018 Jun; 44():184-195. PubMed ID: 29680602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).
    Vanhille C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.