BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30508773)

  • 21. Predicting Bacillus coagulans spores inactivation in tomato pulp under nonisothermal heat treatments.
    Zimmermann M; Longhi DA; Schaffner DW; Aragão GM
    J Food Sci; 2014 May; 79(5):M935-40. PubMed ID: 24712665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey.
    André S; Zuber F; Remize F
    Int J Food Microbiol; 2013 Jul; 165(2):134-43. PubMed ID: 23728430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The evaluation of the recovery capacity of media for heat-treated Bacillus stearothermophilus spore strips.
    Brown GD; Gaze JE
    Int J Food Microbiol; 1988 Oct; 7(2):109-14. PubMed ID: 3275315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of viability and heat resistance of Clostridium sporogenes stored at different temperatures.
    Mah JH; Kang DH; Tang J
    J Food Sci; 2009; 74(1):M23-7. PubMed ID: 19200102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Risk analysis of the thermal sterilization process. Analysis of factors affecting the thermal resistance of microorganisms.
    Akterian SG; Fernandez PS; Hendrickx ME; Tobback PP; Periago PM; Martinez A
    Int J Food Microbiol; 1999 Mar; 47(1-2):51-7. PubMed ID: 10357273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a Quantitative PCR Assay for Thermophilic Spore-Forming Geobacillus stearothermophilus in Canned Food.
    Nakano M
    Biocontrol Sci; 2015; 20(3):221-7. PubMed ID: 26412704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries.
    Mtimet N; Trunet C; Mathot AG; Venaille L; Leguérinel I; Coroller L; Couvert O
    Food Microbiol; 2015 Jun; 48():153-62. PubMed ID: 25791003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of simultaneous application of heat and pressure on the survival of bacterial spores.
    Mallidis CG; Drizou D
    J Appl Bacteriol; 1991 Sep; 71(3):285-8. PubMed ID: 1955421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonisothermal heat resistance determinations with the thermoresistometer Mastia.
    Conesa R; Andreu S; Fernández PS; Esnoz A; Palop A
    J Appl Microbiol; 2009 Aug; 107(2):506-13. PubMed ID: 19302493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes.
    Postollec F; Mathot AG; Bernard M; Divanac'h ML; Pavan S; Sohier D
    Int J Food Microbiol; 2012 Aug; 158(1):1-8. PubMed ID: 22795797
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined effects of ultrahigh vacuum and temperature on the viability of some spores and soil organisms.
    DAVIS NS; SILVERMAN GJ; KELLER WH
    Appl Microbiol; 1963 May; 11(3):202-10. PubMed ID: 14025505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of moderately acidic pH on heat resistance of Clostridium sporogenes spores in phosphate buffer and in buffered pea puree.
    Cameron MS; Leonard SJ; Barrett EL
    Appl Environ Microbiol; 1980 May; 39(5):943-9. PubMed ID: 7396485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679.
    Diao MM; André S; Membré JM
    Int J Food Microbiol; 2014 Mar; 174():23-30. PubMed ID: 24448274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Thermophilic endospores in the environment of a sugar mill in Jujuy].
    Carrillo L
    Rev Argent Microbiol; 2000; 32(3):153-6. PubMed ID: 11008708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heat resistance of Bacillus stearothermophilus spores in alginate-mushroom puree mixture.
    Ocio MJ; Fernández P; Rodrigo F; Martínez A
    Int J Food Microbiol; 1996 Apr; 29(2-3):391-5. PubMed ID: 8796439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viability of bacterial spores surviving heat-treatment is lost by further incubation at temperature and pH not suitable for growth.
    André S; Charton A; Pons A; Vannier C; Couvert O
    Food Microbiol; 2021 May; 95():103690. PubMed ID: 33397631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A meta-analysis accounting for sources of variability to estimate heat resistance reference parameters of bacteria using hierarchical Bayesian modeling: Estimation of D at 121.1 °C and pH 7, zT and zpH of Geobacillus stearothermophilus.
    Rigaux C; Denis JB; Albert I; Carlin F
    Int J Food Microbiol; 2013 Feb; 161(2):112-20. PubMed ID: 23279820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heat activation and heat-induced dormancy of Bacillus stearothermophilus spores.
    FINLEY N; FIELDS ML
    Appl Microbiol; 1962 May; 10(3):231-6. PubMed ID: 13893017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials.
    Caldwell JM; Pérez-Díaz IM; Sandeep KP; Simunovic J; Harris K; Osborne JA; Hassan HM
    J Food Sci; 2015 Aug; 80(8):M1804-14. PubMed ID: 26235411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method of increasing test range and accuracy of bioindicators: Geobacillus stearothermophilus spores.
    Lundahl G
    PDA J Pharm Sci Technol; 2003; 57(4):249-62. PubMed ID: 14558699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.