BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30508773)

  • 41. Determination of the heat resistance of spores using a solid heating block system.
    Mallidis CG; Scholefield J
    J Appl Bacteriol; 1985 Nov; 59(5):407-11. PubMed ID: 4086408
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of pH on heat resistance of spores of Bacillus coagulans in buffer and homogenized foods.
    Palop A; Raso J; Pagán R; Condón S; Sala FJ
    Int J Food Microbiol; 1999 Feb; 46(3):243-9. PubMed ID: 10100904
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mathematical modeling and microbiological verification of ohmic heating of a multicomponent mixture of particles in a continuous flow ohmic heater system with electric field parallel to flow.
    Kamonpatana P; Mohamed HM; Shynkaryk M; Heskitt B; Yousef AE; Sastry SK
    J Food Sci; 2013 Nov; 78(11):E1721-34. PubMed ID: 24245889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal resistance of Bacillus stearothermophilus spores in different heating systems containing some approved food additives.
    López M; Mazas M; González I; González J; Bernardo A
    Lett Appl Microbiol; 1996 Sep; 23(3):187-91. PubMed ID: 8862025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. KINETICS OF DEATH OF BACTERIAL SPORES AT ELEVATED TEMPERATURES.
    WANG DI; SCHARER J; HUMPHREY AE
    Appl Microbiol; 1964 Sep; 12(5):451-4. PubMed ID: 14215978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predictive model to describe the combined effect of pH and NaCl on apparent heat resistance of Bacillus stearothermophilus.
    Periago PM; Fernández PS; Salmerón MC; Martínez A
    Int J Food Microbiol; 1998 Oct; 44(1-2):21-30. PubMed ID: 9849781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus.
    Esnoz A; Periago PM; Conesa R; Palop A
    Int J Food Microbiol; 2006 Feb; 106(2):153-8. PubMed ID: 16216369
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recovery of spores of Bacillus stearothermophilus from thermal injury.
    Labbe RG
    J Appl Bacteriol; 1979 Dec; 47(3):457-62. PubMed ID: 541306
    [No Abstract]   [Full Text] [Related]  

  • 49. Dry thermal resistance of Bacillus anthracis (Sterne) spores and spores of other Bacillus species: implications for biological agent destruction via waste incineration.
    Wood JP; Lemieux P; Betancourt D; Kariher P; Gatchalian NG
    J Appl Microbiol; 2010 Jul; 109(1):99-106. PubMed ID: 20015207
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combined effects of heat, nisin and acidification on the inactivation of Clostridium sporogenes spores in carrot-alginate particles: from kinetics to process validation.
    Naim F; Zareifard MR; Zhu S; Huizing RH; Grabowski S; Marcotte M
    Food Microbiol; 2008 Oct; 25(7):936-41. PubMed ID: 18721685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal resistance of Bacillus stearothermophilus spores on strips previously treated with calcium.
    Penna TC; Machoshvili IA; Taqueda ME
    PDA J Pharm Sci Technol; 1996; 50(4):227-37. PubMed ID: 8810838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of superheated steam on Geobacillus stearothermophilus spore viability.
    Head DS; Cenkowski S; Holley R; Blank G
    J Appl Microbiol; 2008 Apr; 104(4):1213-20. PubMed ID: 18028361
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of bioindicator preparation and storage on thermal resistance of Bacillus stearothermophilus spores.
    Penna TC; Ishii M; Machoshvili IA; Marques M
    Appl Biochem Biotechnol; 2002; 98-100():525-38. PubMed ID: 12018279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation, screening and characterization of thermophilic Bacillus species isolated from dairy products.
    Chopra AK; Mathur DK
    J Appl Bacteriol; 1984 Oct; 57(2):263-71. PubMed ID: 6389462
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH.
    Baril E; Coroller L; Couvert O; Leguérinel I; Postollec F; Boulais C; Carlin F; Mafart P
    Food Microbiol; 2012 May; 30(1):29-36. PubMed ID: 22265280
    [TBL] [Abstract][Full Text] [Related]  

  • 56. THE RELATION BETWEEN HEAT ACTIVATION AND COLONY FORMATION FOR THE SPORES OF BACILLUS STEAROTHERMOPHILUS.
    COOK AM; BROWN MR
    J Pharm Pharmacol; 1964 Nov; 16():725-32. PubMed ID: 14241139
    [No Abstract]   [Full Text] [Related]  

  • 57. The thermal resistance of Bacillus stearothermophilus spores. The effects of temperature and pH of the heating medium.
    Anderson RA; Friesen WT
    Pharm Acta Helv; 1974; 49(9-10):295-8. PubMed ID: 4462138
    [No Abstract]   [Full Text] [Related]  

  • 58. Evaluation of citric acid and GDL in the recovery at different pH levels of Clostridium sporogenes PA 3679 spores subjected to HTST treatment conditions.
    Silla Santos MH; Torres Zarzo J
    Int J Food Microbiol; 1996 Apr; 29(2-3):241-54. PubMed ID: 8796426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validation of an overall model describing the effect of three environmental factors on the apparent D-value of Bacillus cereus spores.
    Leguerinel I; Spegagne I; Couvert O; Gaillard S; Mafart P
    Int J Food Microbiol; 2005 Apr; 100(1-3):223-9. PubMed ID: 15854707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inactivation of Geobacillus stearothermophilus spores in low-acid foods by pressure-assisted thermal processing.
    Ahn J; Lee HY; Balasubramaniam VM
    J Sci Food Agric; 2015 Jan; 95(1):174-8. PubMed ID: 24752997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.