These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 30509069)

  • 21. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio.
    Wang S; Liu Y; Ge P; Kan Q; Yu N; Wang J; Nan J; Ye S; Zhang J; Xu W; Yang B
    Lab Chip; 2018 Mar; 18(6):979-988. PubMed ID: 29485661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of hydrogel-coated single conical nanochannels exhibiting controllable ion rectification characteristics.
    Wang L; Zhang H; Yang Z; Zhou J; Wen L; Li L; Jiang L
    Phys Chem Chem Phys; 2015 Mar; 17(9):6367-73. PubMed ID: 25649179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ionic Strength Gated Redox Current Rectification by Ferrocene Grafted in Silica Nanochannels.
    Sun L; Zhou L; Yan F; Su B
    Langmuir; 2019 Nov; 35(45):14486-14491. PubMed ID: 31614089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved ionic current rectification utilizing cylindrical nanochannels coated with polyelectrolyte layers of non-uniform thickness.
    Nekoubin N; Hardt S; Sadeghi A
    Soft Matter; 2024 May; 20(17):3641-3652. PubMed ID: 38623003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-reversed ionic current rectification displayed by conically shaped nanochannel without any modification.
    Guo Z; Wang J; Ren J; Wang E
    Nanoscale; 2011 Sep; 3(9):3767-73. PubMed ID: 21826328
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulating Ion Transport in a Nanochannel with Tandem and Parallel Structures via Concentration Polarization.
    Wu ZQ; Li ZQ; Wang Y; Xia XH
    J Phys Chem Lett; 2020 Jan; 11(2):524-529. PubMed ID: 31825632
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geometrical control of ionic current rectification in a configurable nanofluidic diode.
    Alibakhshi MA; Liu B; Xu Z; Duan C
    Biomicrofluidics; 2016 Sep; 10(5):054102. PubMed ID: 27679678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field.
    Khatibi M; Ashrafizadeh SN
    Anal Chem; 2023 Dec; 95(49):18188-18198. PubMed ID: 38019778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable ionic transport for a triangular nanochannel in a polymeric nanofluidic system.
    Kim B; Heo J; Kwon HJ; Cho SJ; Han J; Kim SJ; Lim G
    ACS Nano; 2013 Jan; 7(1):740-7. PubMed ID: 23244067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels.
    Jensen KL; Kristensen JT; Crumrine AM; Andersen MB; Bruus H; Pennathur S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056307. PubMed ID: 21728647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of salt valence on the rectification behavior of nanochannels.
    Hsu JP; Chen YM; Yang ST; Lin CY; Tseng S
    J Colloid Interface Sci; 2018 Dec; 531():483-492. PubMed ID: 30055443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena.
    Liu W; Sun Y; Yan H; Ren Y; Song C; Wu Q
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of the surface functionalization and the electrolyte concentration on the electrical conductance of silica nanochannels.
    Martins DC; Chu V; Conde JP
    Biomicrofluidics; 2013; 7(3):34111. PubMed ID: 24404031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting.
    Bang KR; Kwon C; Lee H; Kim S; Cho ES
    ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-Controlled Ionic Transport through Molybdenum Disulfide Membranes.
    Su Y; Liu D; Yang G; Wang L; Razal JM; Lei W
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34679-34685. PubMed ID: 34261305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox-Driven Reversible Gating of Solid-State Nanochannels.
    Laucirica G; Marmisollé WA; Toimil-Molares ME; Trautmann C; Azzaroni O
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30001-30009. PubMed ID: 31335118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light-Induced Ion Rectification in Zigzag Nanochannels.
    Li C; Hu S; Yang L; Fan J; Yao Z; Zhang Y; Shao G; Hu J
    Chem Asian J; 2015 Dec; 10(12):2733-7. PubMed ID: 26255623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic Effect of Electrostatic Interaction and Ionic Dehydration on Asymmetric Ion Transport in Nanochannel/Ion Channel Composite Membrane.
    Wu ZQ; Li CY; Ding XL; Li ZQ; Xia XH
    J Phys Chem Lett; 2022 Jun; ():5267-5274. PubMed ID: 35674726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.