These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30509075)

  • 1. Freeze-Float Selection of Ice Nucleators.
    Kamijo Y; Derda R
    Langmuir; 2019 Jan; 35(2):359-364. PubMed ID: 30509075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.
    Weng L; Tessier SN; Swei A; Stott SL; Toner M
    Cryobiology; 2017 Apr; 75():1-6. PubMed ID: 28315320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing activities of flavonoids in solutions containing different ice nucleators.
    Kuwabara C; Wang D; Kasuga J; Fukushi Y; Arakawa K; Koyama T; Inada T; Fujikawa S
    Cryobiology; 2012 Jun; 64(3):279-85. PubMed ID: 22406212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic Device for Automated High Throughput Detection of Ice Nucleation of Snomax
    Roy P; House ML; Dutcher CS
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33799595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of an ice-nucleating activity agent on subzero survival of nematode juveniles.
    Wergin WP; Yaklich RW; Carta LK; Erbe EF; Murphy CA
    J Nematol; 2000 Jun; 32(2):198-204. PubMed ID: 19270966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ice nucleating agents allow embryo freezing without manual seeding.
    Teixeira M; Buff S; Desnos H; Loiseau C; Bruyère P; Joly T; Commin L
    Theriogenology; 2017 Dec; 104():173-178. PubMed ID: 28863350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica.
    Lee MR; Lee RE; Strong-Gunderson JM; Minges SR
    Cryobiology; 1995 Aug; 32(4):358-65. PubMed ID: 7656570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.
    Suzuki S; Fukuda S; Fukushi Y; Arakawa K
    Biosci Biotechnol Biochem; 2017 Nov; 81(11):2090-2097. PubMed ID: 28942726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Ice Nucleation in Monodisperse D2O and H2O-in-Oil Emulsions.
    Weng L; Tessier SN; Smith K; Edd JF; Stott SL; Toner M
    Langmuir; 2016 Sep; 32(36):9229-36. PubMed ID: 27495973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of bacterial ice nucleation by polyglycerol polymers.
    Wowk B; Fahy GM
    Cryobiology; 2002 Feb; 44(1):14-23. PubMed ID: 12061844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.
    Kasuga J; Mizuno K; Arakawa K; Fujikawa S
    Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes.
    Whale TF; Holden MA; Wilson TW; O'Sullivan D; Murray BJ
    Chem Sci; 2018 May; 9(17):4142-4151. PubMed ID: 29780544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved approach for measuring immersion freezing in large droplets over a wide temperature range.
    Tobo Y
    Sci Rep; 2016 Sep; 6():32930. PubMed ID: 27596247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-Ice Nucleating Activity of Surfactants against Silver Iodide in Water-in-Oil Emulsions.
    Inada T; Koyama T; Tomita H; Fuse T; Kuwabara C; Arakawa K; Fujikawa S
    J Phys Chem B; 2017 Jul; 121(27):6580-6587. PubMed ID: 28617608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topical application of ice-nucleating-active bacteria decreases insect cold tolerance.
    Strong-Gunderson JM; Lee RE; Lee MR
    Appl Environ Microbiol; 1992 Sep; 58(9):2711-6. PubMed ID: 16348764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-ice nucleating activity of polyphenol compounds against silver iodide.
    Koyama T; Inada T; Kuwabara C; Arakawa K; Fujikawa S
    Cryobiology; 2014 Oct; 69(2):223-8. PubMed ID: 25086201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects of growth temperature on ice nuclei active at different temperatures that are produced by cells of Pseudomonas syringae.
    Gurian-Sherman D; Lindow SE
    Cryobiology; 1995 Apr; 32(2):129-38. PubMed ID: 7743815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and localization of an ice nucleating protein from a soil bacterium, Pseudomonas borealis.
    Vanderveer TL; Choi J; Miao D; Walker VK
    Cryobiology; 2014 Aug; 69(1):110-8. PubMed ID: 24930584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing of water and aqueous NaCl droplets coated by organic monolayers as a function of surfactant properties and water activity.
    Knopf DA; Forrester SM
    J Phys Chem A; 2011 Jun; 115(22):5579-91. PubMed ID: 21568271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice-nucleating bacteria control the order and dynamics of interfacial water.
    Pandey R; Usui K; Livingstone RA; Fischer SA; Pfaendtner J; Backus EH; Nagata Y; Fröhlich-Nowoisky J; Schmüser L; Mauri S; Scheel JF; Knopf DA; Pöschl U; Bonn M; Weidner T
    Sci Adv; 2016 Apr; 2(4):e1501630. PubMed ID: 27152346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.