BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30509129)

  • 1. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).
    Shin HW; Takatsu H
    FASEB J; 2019 Mar; 33(3):3087-3096. PubMed ID: 30509129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Analysis and Functional Characterization of P4-ATPase Phospholipid Flippases from Murine Tissues.
    Wang J; Molday LL; Hii T; Coleman JA; Wen T; Andersen JP; Molday RS
    Sci Rep; 2018 Jul; 8(1):10795. PubMed ID: 30018401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M; Huang Y; Graham TR
    J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and substrate specificity of the human P4-ATPase ATP8B1.
    Dieudonné T; Kümmerer F; Laursen MJ; Stock C; Flygaard RK; Khalid S; Lenoir G; Lyons JA; Lindorff-Larsen K; Nissen P
    Nat Commun; 2023 Nov; 14(1):7492. PubMed ID: 37980352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain.
    Baldridge RD; Xu P; Graham TR
    J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding P4-ATPase substrate interactions.
    Roland BP; Graham TR
    Crit Rev Biochem Mol Biol; 2016; 51(6):513-527. PubMed ID: 27696908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes.
    Yabas M; Jing W; Shafik S; Bröer S; Enders A
    PLoS One; 2016; 11(1):e0146774. PubMed ID: 26799398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.
    Takeda M; Yamagami K; Tanaka K
    Eukaryot Cell; 2014 Mar; 13(3):363-75. PubMed ID: 24390140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity.
    Jain BK; Roland BP; Graham TR
    J Biol Chem; 2020 Dec; 295(52):17997-18009. PubMed ID: 33060204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes.
    Norris AC; Mansueto AJ; Jimenez M; Yazlovitskaya EM; Jain BK; Graham TR
    Biochim Biophys Acta Mol Cell Res; 2024 Apr; 1871(4):119700. PubMed ID: 38382846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminoglycerophospholipid flipping and P4-ATPases in Toxoplasma gondii.
    Chen K; Günay-Esiyok Ö; Klingeberg M; Marquardt S; Pomorski TG; Gupta N
    J Biol Chem; 2021; 296():100315. PubMed ID: 33485966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the track of the lipid transport pathway of the phospholipid flippase ATP8A2 - Mutation analysis of residues of the transmembrane segments M1, M2, M3 and M4.
    Mogensen LS; Mikkelsen SA; Tadini-Buoninsegni F; Holm R; Matsell E; Vilsen B; Molday RS; Andersen JP
    Biochim Biophys Acta Mol Cell Res; 2024 Jan; 1871(1):119570. PubMed ID: 37678495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel missense variant in ATP11C is associated with reduced red blood cell phosphatidylserine flippase activity and mild hereditary hemolytic anemia.
    van Dijk MJ; van Oirschot BA; Harrison AN; Recktenwald SM; Qiao M; Stommen A; Cloos AS; Vanderroost J; Terrasi R; Dey K; Bos J; Rab MAE; Bogdanova A; Minetti G; Muccioli GG; Tyteca D; Egée S; Kaestner L; Molday RS; van Beers EJ; van Wijk R
    Am J Hematol; 2023 Dec; 98(12):1877-1887. PubMed ID: 37671681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant P4-ATPase lipid flippases: How are they regulated?
    Villagrana R; López-Marqués RL
    Biochim Biophys Acta Mol Cell Res; 2024 Jan; 1871(1):119599. PubMed ID: 37741575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and in silico analysis of ATP8A2 and other P4-ATPase variants associated with human genetic diseases.
    Matsell E; Andersen JP; Molday RS
    Dis Model Mech; 2024 Jun; 17(6):. PubMed ID: 38436085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucosylceramide flippases contribute to cellular glucosylceramide homeostasis.
    Kita N; Hamamoto A; Gowda SGB; Takatsu H; Nakayama K; Arita M; Hui SP; Shin HW
    J Lipid Res; 2024 Mar; 65(3):100508. PubMed ID: 38280458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal Atp8b1 dysfunction causes hepatic choline deficiency and steatohepatitis.
    Tamura R; Sabu Y; Mizuno T; Mizuno S; Nakano S; Suzuki M; Abukawa D; Kaji S; Azuma Y; Inui A; Okamoto T; Shimizu S; Fukuda A; Sakamoto S; Kasahara M; Takahashi S; Kusuhara H; Zen Y; Ando T; Hayashi H
    Nat Commun; 2023 Nov; 14(1):6763. PubMed ID: 37990006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consensus, controversies, and conundrums of P4-ATPases: the emerging face of eukaryotic lipid flippases.
    Duan HD; Li H
    J Biol Chem; 2024 May; ():107387. PubMed ID: 38763336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lipid flippase ATP10B enables cellular lipid uptake under stress conditions.
    Wouters R; Beletchi I; Van den Haute C; Baekelandt V; Martin S; Eggermont J; Vangheluwe P
    Biochim Biophys Acta Mol Cell Res; 2024 Feb; 1871(2):119652. PubMed ID: 38086447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P-type ATPases: Many more enigmas left to solve.
    Palmgren M
    J Biol Chem; 2023 Nov; 299(11):105352. PubMed ID: 37838176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.