BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 30509171)

  • 1. The possible molecular mechanisms of farnesol on the antifungal resistance of C. albicans biofilms: the regulation of CYR1 and PDE2.
    Chen S; Xia J; Li C; Zuo L; Wei X
    BMC Microbiol; 2018 Dec; 18(1):203. PubMed ID: 30509171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains.
    Xia J; Qian F; Xu W; Zhang Z; Wei X
    Biofouling; 2017 Apr; 33(4):283-293. PubMed ID: 28317391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis.
    Davis-Hanna A; Piispanen AE; Stateva LI; Hogan DA
    Mol Microbiol; 2008 Jan; 67(1):47-62. PubMed ID: 18078440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm.
    Yu LH; Wei X; Ma M; Chen XJ; Xu SB
    Antimicrob Agents Chemother; 2012 Feb; 56(2):770-5. PubMed ID: 22106223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.
    Watamoto T; Samaranayake LP; Egusa H; Yatani H; Seneviratne CJ
    J Med Microbiol; 2011 Sep; 60(Pt 9):1241-1247. PubMed ID: 21474609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A possible mechanism of farnesol tolerance in
    Chen S; Xu Z; Liu S; Duan W; Huang Y; Wei X
    J Med Microbiol; 2022 Jan; 71(1):. PubMed ID: 35020583
    [No Abstract]   [Full Text] [Related]  

  • 8. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans.
    Lindsay AK; Deveau A; Piispanen AE; Hogan DA
    Eukaryot Cell; 2012 Oct; 11(10):1219-25. PubMed ID: 22886999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human serum potentiates the expression of genes associated with antifungal drug resistance in C. albicans biofilms on central venous catheters.
    Samaranayake LP; Anil S; Hashem M; Vellappally S; Cheung BP
    Mycopathologia; 2015 Apr; 179(3-4):195-204. PubMed ID: 25515243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a hyperactive Cyr1 mutant reveals new regulatory mechanisms for cellular cAMP levels in Candida albicans.
    Bai C; Xu XL; Wang HS; Wang YM; Chan FY; Wang Y
    Mol Microbiol; 2011 Nov; 82(4):879-93. PubMed ID: 21992526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans.
    Vediyappan G; Rossignol T; d'Enfert C
    Antimicrob Agents Chemother; 2010 May; 54(5):2096-111. PubMed ID: 20194705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms.
    Katragkou A; McCarthy M; Alexander EL; Antachopoulos C; Meletiadis J; Jabra-Rizk MA; Petraitis V; Roilides E; Walsh TJ
    J Antimicrob Chemother; 2015 Feb; 70(2):470-8. PubMed ID: 25288679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol.
    Cao YY; Cao YB; Xu Z; Ying K; Li Y; Xie Y; Zhu ZY; Chen WS; Jiang YY
    Antimicrob Agents Chemother; 2005 Feb; 49(2):584-9. PubMed ID: 15673737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth.
    Haque F; Alfatah M; Ganesan K; Bhattacharyya MS
    Sci Rep; 2016 Mar; 6():23575. PubMed ID: 27030404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Biofilm Formation by
    Lee JH; Kim YG; Khadke SK; Yamano A; Watanabe A; Lee J
    ACS Infect Dis; 2019 Jul; 5(7):1177-1187. PubMed ID: 31055910
    [No Abstract]   [Full Text] [Related]  

  • 16. Tricyclic antidepressants inhibit Candida albicans growth and biofilm formation.
    Caldara M; Marmiroli N
    Int J Antimicrob Agents; 2018 Oct; 52(4):500-505. PubMed ID: 29990546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zap1 control of cell-cell signaling in Candida albicans biofilms.
    Ganguly S; Bishop AC; Xu W; Ghosh S; Nickerson KW; Lanni F; Patton-Vogt J; Mitchell AP
    Eukaryot Cell; 2011 Nov; 10(11):1448-54. PubMed ID: 21890817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.
    Hsu CC; Lai WL; Chuang KC; Lee MH; Tsai YC
    Med Mycol; 2013 Jul; 51(5):473-82. PubMed ID: 23210679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity of Sanguinarine against Candida albicans Biofilms.
    Zhong H; Hu DD; Hu GH; Su J; Bi S; Zhang ZE; Wang Z; Zhang RL; Xu Z; Jiang YY; Wang Y
    Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28223387
    [No Abstract]   [Full Text] [Related]  

  • 20. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans.
    Zhang L; Chang W; Sun B; Groh M; Speicher A; Lou H
    PLoS One; 2011; 6(12):e28953. PubMed ID: 22174935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.