These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30509501)

  • 1. An affinity-based approach to engineer laminin-presenting cell instructive microenvironments.
    Barros D; Parreira P; Furtado J; Ferreira-da-Silva F; Conde-Sousa E; García AJ; Martins MCL; Amaral IF; Pêgo AP
    Biomaterials; 2019 Feb; 192():601-611. PubMed ID: 30509501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering hydrogels with affinity-bound laminin as 3D neural stem cell culture systems.
    Barros D; Conde-Sousa E; Gonçalves AM; Han WM; García AJ; Amaral IF; Pêgo AP
    Biomater Sci; 2019 Nov; 7(12):5338-5349. PubMed ID: 31620727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactivity of immobilized EGF on self-assembled monolayers: optimization of the immobilization process.
    Gonçalves R; Martins MC; Oliveira MJ; Almeida-Porada G; Barbosa MA
    J Biomed Mater Res A; 2010 Aug; 94(2):576-85. PubMed ID: 20198690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent growth factor tethering to direct neural stem cell differentiation and self-organization.
    Ham TR; Farrag M; Leipzig ND
    Acta Biomater; 2017 Apr; 53():140-151. PubMed ID: 28161574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of peptides with distinct biological activities onto stem cell culture substrates using orthogonal chemistries.
    Hudalla GA; Murphy WL
    Langmuir; 2010 May; 26(9):6449-56. PubMed ID: 20353153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laminin-Inspired Cell-Instructive Microenvironments for Neural Stem Cells.
    Barros D; Amaral IF; Pêgo AP
    Biomacromolecules; 2020 Feb; 21(2):276-293. PubMed ID: 31789020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein immobilization at gold-thiol surfaces and potential for biosensing.
    Frasconi M; Mazzei F; Ferri T
    Anal Bioanal Chem; 2010 Oct; 398(4):1545-64. PubMed ID: 20414768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chain-length dependence of the protein and cell resistance of oligo(ethylene glycol)-terminated self-assembled monolayers on gold.
    Zhu B; Eurell T; Gunawan R; Leckband D
    J Biomed Mater Res; 2001 Sep; 56(3):406-16. PubMed ID: 11372059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.
    Rosellini E; Cristallini C; Guerra GD; Barbani N
    J Biomater Sci Polym Ed; 2015; 26(9):515-33. PubMed ID: 25787756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels.
    Liyanage W; Ardoña HA; Mao HQ; Tovar JD
    Bioconjug Chem; 2017 Mar; 28(3):751-759. PubMed ID: 28292179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study.
    Slaughter GE; Bieberich E; Wnek GE; Wynne KJ; Guiseppi-Elie A
    Langmuir; 2004 Aug; 20(17):7189-200. PubMed ID: 15301505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron microscopic structure of agrin and mapping of its binding site in laminin-1.
    Denzer AJ; Schulthess T; Fauser C; Schumacher B; Kammerer RA; Engel J; Ruegg MA
    EMBO J; 1998 Jan; 17(2):335-43. PubMed ID: 9430625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of agrin with laminin requires a coiled-coil conformation of the agrin-binding site within the laminin gamma1 chain.
    Kammerer RA; Schulthess T; Landwehr R; Schumacher B; Lustig A; Yurchenco PD; Ruegg MA; Engel J; Denzer AJ
    EMBO J; 1999 Dec; 18(23):6762-70. PubMed ID: 10581249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of the laminin-binding site of the N-terminal agrin domain (NtA).
    Mascarenhas JB; Rüegg MA; Winzen U; Halfter W; Engel J; Stetefeld J
    EMBO J; 2003 Feb; 22(3):529-36. PubMed ID: 12554653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface polyethylene glycol enhances substrate-mediated gene delivery by nonspecifically immobilized complexes.
    Pannier AK; Wieland JA; Shea LD
    Acta Biomater; 2008 Jan; 4(1):26-39. PubMed ID: 17920004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate effects in poly(ethylene glycol) self-assembled monolayers on granular and flame-annealed gold.
    Rundqvist J; Hoh JH; Haviland DB
    J Colloid Interface Sci; 2006 Sep; 301(1):337-41. PubMed ID: 16765974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies.
    Chen R; Yu Y; Zhang W; Pan Y; Wang J; Xiao Y; Liu C
    Acta Biomater; 2018 Oct; 80():108-120. PubMed ID: 30218780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional mixed SAMs that promote both cell adhesion and noncovalent DNA immobilization.
    Choi S; Murphy WL
    Langmuir; 2008 Jun; 24(13):6873-80. PubMed ID: 18507410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding Stem-Cell-Secreted Extracellular Matrix Protein Capture in Two and Three Dimensions Using Protein Binding Peptides.
    Hezaveh H; Cosson S; Otte EA; Su G; Fairbanks BD; Cooper-White JJ
    Biomacromolecules; 2018 Mar; 19(3):721-730. PubMed ID: 29437383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments.
    Zimmermann JL; Nicolaus T; Neuert G; Blank K
    Nat Protoc; 2010 Jun; 5(6):975-85. PubMed ID: 20448543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.