BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30509586)

  • 1. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents.
    Pavón S; Fortuny A; Coll MT; Sastre AM
    Waste Manag; 2018 Dec; 82():241-248. PubMed ID: 30509586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neodymium recovery from NdFeB magnet wastes using Primene 81R·Cyanex 572 IL by solvent extraction.
    Pavón S; Fortuny A; Coll MT; Sastre AM
    J Environ Manage; 2018 Sep; 222():359-367. PubMed ID: 29870964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.
    Yang F; Kubota F; Baba Y; Kamiya N; Goto M
    J Hazard Mater; 2013 Jun; 254-255():79-88. PubMed ID: 23587931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid-choline chloride.
    Pateli IM; Abbott AP; Binnemans K; Rodriguez Rodriguez N
    RSC Adv; 2020 Aug; 10(48):28879-28890. PubMed ID: 35520061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids.
    Banda R; Forte F; Onghena B; Binnemans K
    RSC Adv; 2019 Feb; 9(9):4876-4883. PubMed ID: 35514665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urban mining of terbium, europium, and yttrium from real fluorescent lamp waste using supercritical fluid extraction: Process development and mechanistic investigation.
    Zhang J; Anawati J; Azimi G
    Waste Manag; 2022 Feb; 139():168-178. PubMed ID: 34973572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Recovery of Europium and Yttrium Ions with Cyanex 272-Polyacrylonitrile Nanofibers.
    Morillo Martín D; Diaz Jalaff L; García MA; Faccini M
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31757000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid.
    Stoy L; Diaz V; Huang CH
    Environ Sci Technol; 2021 Jul; 55(13):9209-9220. PubMed ID: 34159779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rare earth elements recovery from secondary wastes by solid-state chlorination and selective organic leaching.
    Pavón S; Lorenz T; Fortuny A; Sastre AM; Bertau M
    Waste Manag; 2021 Mar; 122():55-63. PubMed ID: 33486303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmentally friendly comprehensive hydrometallurgical method development for neodymium recovery from mixed rare earth aqueous solutions using organo-phosphorus derivatives.
    Arellano Ruiz VC; Kuchi R; Parhi PK; Lee JY; Jyothi RK
    Sci Rep; 2020 Oct; 10(1):16911. PubMed ID: 33037283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Split-anion solvent extraction of light rare earths from concentrated chloride aqueous solutions to nitrate organic ionic liquids.
    Regadío M; Vander Hoogerstraete T; Banerjee D; Binnemans K
    RSC Adv; 2018 Oct; 8(60):34754-34763. PubMed ID: 35548638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a functionalized ionic liquid extractant tributylmethylammonium dibutyldiglycolamate ([A336][BDGA]) in light rare earth extraction and separation.
    Qiu L; Pan Y; Zhang W; Gong A
    PLoS One; 2018; 13(8):e0201405. PubMed ID: 30138315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent extraction of rare-earth ions based on functionalized ionic liquids.
    Sun X; Luo H; Dai S
    Talanta; 2012 Feb; 90():132-7. PubMed ID: 22340127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Recovery of Rare Earth Elements from Coal Fly Ash Leachates Using Liquid Membrane Processes.
    Smith RC; Taggart RK; Hower JC; Wiesner MR; Hsu-Kim H
    Environ Sci Technol; 2019 Apr; 53(8):4490-4499. PubMed ID: 30907587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.
    Innocenzi V; Ippolito NM; De Michelis I; Medici F; Vegliò F
    J Environ Manage; 2016 Dec; 184(Pt 3):552-559. PubMed ID: 27789090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An insight into REEs recovery from spent fluorescent lamps: Evaluation of the affinity of an NH
    Colombo F; Fantini R; Di Renzo F; Malavasi G; Malferrari D; Arletti R
    Waste Manag; 2024 Mar; 175():339-347. PubMed ID: 38241823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats.
    Nakamura Y; Tsumura Y; Tonogai Y; Shibata T; Ito Y
    Fundam Appl Toxicol; 1997 Jun; 37(2):106-16. PubMed ID: 9242583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abundance, spatial variation, and sources of rare earth elements in soils around ion-adsorbed rare earth mining areas.
    Li W; Zuo Y; Wang L; Wan X; Yang J; Liang T; Song H; Weihrauch C; Rinklebe J
    Environ Pollut; 2022 Nov; 313():120099. PubMed ID: 36084740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid.
    Stoy L; Kulkarni Y; Huang CH
    Environ Sci Technol; 2022 Apr; 56(8):5150-5160. PubMed ID: 35380811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.
    Hu AH; Kuo CH; Huang LH; Su CC
    Waste Manag; 2017 Feb; 60():765-774. PubMed ID: 27810122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.