These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30509600)

  • 21. Isolation, Identification of Carotenoid-Producing
    Zhao Y; Guo L; Xia Y; Zhuang X; Chu W
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30857196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest.
    Mannazzu I; Landolfo S; Lopes da Silva T; Buzzini P
    World J Microbiol Biotechnol; 2015 Nov; 31(11):1665-73. PubMed ID: 26335057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system.
    Brand D; Pandey A; Roussos S; Soccol CR
    Enzyme Microb Technol; 2000 Jul; 27(1-2):127-133. PubMed ID: 10862912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications of Compounds from Coffee Processing By-Products.
    Iriondo-DeHond A; Iriondo-DeHond M; Del Castillo MD
    Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32825719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-succinic acid production from coffee husk treated with thermochemical and fungal hydrolysis.
    Dessie W; Zhu J; Xin F; Zhang W; Jiang Y; Wu H; Ma J; Jiang M
    Bioprocess Biosyst Eng; 2018 Oct; 41(10):1461-1470. PubMed ID: 29946744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the antimicrobial properties of oligo-2-hydroxy-1-naphthaldehyde.
    Yapici BM; Kaya I; Senol D
    Drug Metabol Drug Interact; 2005; 21(2):131-8. PubMed ID: 16355978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation, identification and toxigenic potential of ochratoxin A-producing Aspergillus species from coffee beans grown in two regions of Thailand.
    Noonim P; Mahakarnchanakul W; Nielsen KF; Frisvad JC; Samson RA
    Int J Food Microbiol; 2008 Dec; 128(2):197-202. PubMed ID: 18819720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.
    Pleissner D; Neu AK; Mehlmann K; Schneider R; Puerta-Quintero GI; Venus J
    Bioresour Technol; 2016 Oct; 218():167-73. PubMed ID: 27359065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues.
    Saini RK; Keum YS
    J Ind Microbiol Biotechnol; 2019 May; 46(5):657-674. PubMed ID: 30415292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxigenic fungi: which are important?
    Pitt JI
    Med Mycol; 2000; 38 Suppl 1():17-22. PubMed ID: 11204142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimicrobial activity of Wedelia trilobata crude extracts.
    Taddei A; Rosas-Romero AJ
    Phytomedicine; 1999 May; 6(2):133-4. PubMed ID: 10374253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-specificity of nutritional substrate for ochratoxin A production by isolates of Aspergillus ochraceus.
    Pardo E; Sanchis V; Ramos AJ; Marín S
    Food Microbiol; 2006 Jun; 23(4):351-8. PubMed ID: 16943024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robusta coffee beans post-harvest microflora: Lactobacillus plantarum sp. as potential antagonist of Aspergillus carbonarius.
    Djossou O; Perraud-Gaime I; Mirleau FL; Rodriguez-Serrano G; Karou G; Niamke S; Ouzari I; Boudabous A; Roussos S
    Anaerobe; 2011 Dec; 17(6):267-72. PubMed ID: 21497665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An enzyme-linked immunosorbent assay for monitoring of Aspergillus ochraceus growth in coffee powder, chilli powder and poultry feed.
    Anand S; Rati ER
    Lett Appl Microbiol; 2006 Jan; 42(1):59-65. PubMed ID: 16411921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antiaflatoxigenic and antioxidant activity of an essential oil from Ageratum conyzoides L.
    Patil RP; Nimbalkar MS; Jadhav UU; Dawkar VV; Govindwar SP
    J Sci Food Agric; 2010 Mar; 90(4):608-14. PubMed ID: 20355088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of antioxidant, total phenol and flavonoid content and antimicrobial activities of Artocarpus altilis (breadfruit) of underutilized tropical fruit extracts.
    Jalal TK; Ahmed IA; Mikail M; Momand L; Draman S; Isa ML; Abdull Rasad MS; Nor Omar M; Ibrahim M; Abdul Wahab R
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3231-43. PubMed ID: 25649443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzymatic Hydrolysate of Cinnamon Waste Material as Feedstock for the Microbial Production of Carotenoids.
    Bertacchi S; Pagliari S; Cantù C; Bruni I; Labra M; Branduardi P
    Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33525450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial activity of some natural extracts encapsulated within silica matrices.
    Steiner AD; Vargas A; Fronza N; Brandelli A; Dos Santos JHZ
    Colloids Surf B Biointerfaces; 2017 Dec; 160():177-183. PubMed ID: 28934660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of microbiological contamination, antibacterial and antioxidant activities of natural plant hazelnut (
    Nikolaieva N; Kačániová M; González JC; Grygorieva O; Nôžková J
    J Environ Sci Health B; 2019; 54(6):525-532. PubMed ID: 31046581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases.
    Zanutto-Elgui MR; Vieira JCS; Prado DZD; Buzalaf MAR; Padilha PM; Elgui de Oliveira D; Fleuri LF
    Food Chem; 2019 Apr; 278():823-831. PubMed ID: 30583449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.