BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30509995)

  • 21. Spatial alterations of De Novo purine biosynthetic enzymes by Akt-independent PDK1 signaling pathways.
    Schmitt DL; Sundaram A; Jeon M; Luu BT; An S
    PLoS One; 2018; 13(4):e0195989. PubMed ID: 29668719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism.
    Fang Y; French J; Zhao H; Benkovic S
    Biotechnol Genet Eng Rev; 2013; 29():31-48. PubMed ID: 24568251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequestration-Mediated Downregulation of de Novo Purine Biosynthesis by AMPK.
    Schmitt DL; Cheng YJ; Park J; An S
    ACS Chem Biol; 2016 Jul; 11(7):1917-24. PubMed ID: 27128383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly.
    Chou MC; Wang YH; Chen FY; Kung CY; Wu KP; Kuo JC; Chan SJ; Cheng ML; Lin CY; Chou YC; Ho MC; Firestine S; Huang JR; Chen RH
    Mol Cell; 2023 Nov; 83(22):4123-4140.e12. PubMed ID: 37848033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome.
    French JB; Zhao H; An S; Niessen S; Deng Y; Cravatt BF; Benkovic SJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(7):2528-33. PubMed ID: 23359685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization.
    Stark M; Raz S; Assaraf YG
    J Proteomics; 2021 May; 239():104169. PubMed ID: 33676037
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase-separated condensates of metabolic complexes in living cells: Purinosome and glucosome.
    An S; Jeon M; Kennedy EL; Kyoung M
    Methods Enzymol; 2019; 628():1-17. PubMed ID: 31668224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diverse strategies adopted by nature for regulating purine biosynthesis via fine-tuning of purine metabolic enzymes.
    Singh S; Anand R
    Curr Opin Chem Biol; 2023 Apr; 73():102261. PubMed ID: 36682088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purinosomes involved in the regulation of tumor metabolism: current progress and potential application targets.
    Xie J; Liu J; Chen X; Zeng C
    Front Oncol; 2024; 14():1333822. PubMed ID: 38746670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revisiting and revising the purinosome.
    Zhao A; Tsechansky M; Ellington AD; Marcotte EM
    Mol Biosyst; 2014 Mar; 10(3):369-74. PubMed ID: 24413256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic channeling: predictions, deductions, and evidence.
    Pareek V; Sha Z; He J; Wingreen NS; Benkovic SJ
    Mol Cell; 2021 Sep; 81(18):3775-3785. PubMed ID: 34547238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GPCRs regulate the assembly of a multienzyme complex for purine biosynthesis.
    Verrier F; An S; Ferrie AM; Sun H; Kyoung M; Deng H; Fang Y; Benkovic SJ
    Nat Chem Biol; 2011 Oct; 7(12):909-15. PubMed ID: 22020552
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR-Cas9 induced mutations along de novo purine synthesis in HeLa cells result in accumulation of individual enzyme substrates and affect purinosome formation.
    Baresova V; Krijt M; Skopova V; Souckova O; Kmoch S; Zikanova M
    Mol Genet Metab; 2016 Nov; 119(3):270-277. PubMed ID: 27590927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping Post-Translational Modifications of de Novo Purine Biosynthetic Enzymes: Implications for Pathway Regulation.
    Liu C; Knudsen GM; Pedley AM; He J; Johnson JL; Yaron TM; Cantley LC; Benkovic SJ
    J Proteome Res; 2019 May; 18(5):2078-2087. PubMed ID: 30964683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical severity in Lesch-Nyhan disease: the role of residual enzyme and compensatory pathways.
    Fu R; Sutcliffe D; Zhao H; Huang X; Schretlen DJ; Benkovic S; Jinnah HA
    Mol Genet Metab; 2015 Jan; 114(1):55-61. PubMed ID: 25481104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction network among de novo purine nucleotide biosynthesis enzymes in Escherichia coli.
    Gedeon A; Karimova G; Ayoub N; Dairou J; Giai Gianetto Q; Vichier-Guerre S; Vidalain PO; Ladant D; Munier-Lehmann H
    FEBS J; 2023 Jun; 290(12):3165-3184. PubMed ID: 36748301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surveying purine biosynthesis across the domains of life unveils promising drug targets in pathogens.
    Chua SM; Fraser JA
    Immunol Cell Biol; 2020 Nov; 98(10):819-831. PubMed ID: 32748425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction.
    Liu L; Vo A; Liu G; McKeehan WL
    Cancer Res; 2005 May; 65(10):4191-201. PubMed ID: 15899810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mthfs is an Essential Gene in Mice and a Component of the Purinosome.
    Field MS; Anderson DD; Stover PJ
    Front Genet; 2011; 2():36. PubMed ID: 22303332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.