These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30510135)

  • 1. Identification of two segments of the γ subunit of ATP synthase responsible for the different affinities of the catalytic nucleotide-binding sites.
    Mnatsakanyan N; Li Y; Weber J
    J Biol Chem; 2019 Jan; 294(4):1152-1160. PubMed ID: 30510135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The beta subunit loop that couples catalysis and rotation in ATP synthase has a critical length.
    Mnatsakanyan N; Kemboi SK; Salas J; Weber J
    J Biol Chem; 2011 Aug; 286(34):29788-96. PubMed ID: 21705326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the betaDELSEED-loop of ATP synthase.
    Mnatsakanyan N; Krishnakumar AM; Suzuki T; Weber J
    J Biol Chem; 2009 Apr; 284(17):11336-45. PubMed ID: 19246448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.
    Gaballo A; Zanotti F; Papa S
    Curr Protein Pept Sci; 2002 Aug; 3(4):451-60. PubMed ID: 12370007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites.
    Grüber G; Capaldi RA
    J Biol Chem; 1996 Dec; 271(51):32623-8. PubMed ID: 8955091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotation triggers nucleotide-independent conformational transition of the empty β subunit of F₁-ATPase.
    Czub J; Grubmüller H
    J Am Chem Soc; 2014 May; 136(19):6960-8. PubMed ID: 24798048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Gö1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B.
    Schäfer IB; Bailer SM; Düser MG; Börsch M; Bernal RA; Stock D; Grüber G
    J Mol Biol; 2006 May; 358(3):725-40. PubMed ID: 16563431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of rotor subunits in the chloroplast ATP synthase modulated by nucleotides and by Mg2+.
    Gertz M; Seelert H; Dencher NA; Poetsch A
    Biochim Biophys Acta; 2007 May; 1774(5):566-74. PubMed ID: 17442644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR solution structure of subunit F of the methanogenic A1AO adenosine triphosphate synthase and its interaction with the nucleotide-binding subunit B.
    Gayen S; Vivekanandan S; Biuković G; Grüber G; Yoon HS
    Biochemistry; 2007 Oct; 46(42):11684-94. PubMed ID: 17910473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic Growth of Escherichia coli Is Reduced, and ATP Synthesis Is Selectively Inhibited when Five C-terminal Residues Are Deleted from the ϵ Subunit of ATP Synthase.
    Shah NB; Duncan TM
    J Biol Chem; 2015 Aug; 290(34):21032-21041. PubMed ID: 26160173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic site forms and controls in ATP synthase catalysis.
    Boyer PD
    Biochim Biophys Acta; 2000 May; 1458(2-3):252-62. PubMed ID: 10838041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Torque transmission mechanism via DELSEED loop of F1-ATPase.
    Watanabe R; Koyasu K; You H; Tanigawara M; Noji H
    Biophys J; 2015 Mar; 108(5):1144-52. PubMed ID: 25762326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-Terminal mutations in the chloroplast ATP synthase gamma subunit impair ATP synthesis and stimulate ATP hydrolysis.
    He F; Samra HS; Johnson EA; Degner NR; McCarty RE; Richter ML
    Biochemistry; 2008 Jan; 47(2):836-44. PubMed ID: 18092810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nucleotide binding affinities of two critical conformations of Escherichia coli ATP synthase.
    Li Y; Valdez NA; Mnatsakanyan N; Weber J
    Arch Biochem Biophys; 2021 Aug; 707():108899. PubMed ID: 33991499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational dynamics of the rotary subunit F in the A
    Singh D; Sielaff H; Börsch M; Grüber G
    FEBS Lett; 2017 Mar; 591(6):854-862. PubMed ID: 28231387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal region of the ϵ subunit from cyanobacterial ATP synthase alone can inhibit ATPase activity.
    Inabe K; Kondo K; Yoshida K; Wakabayashi KI; Hisabori T
    J Biol Chem; 2019 Jun; 294(26):10094-10103. PubMed ID: 31068416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions among gamma R268, gamma Q269, and the beta subunit catch loop of Escherichia coli F1-ATPase are important for catalytic activity.
    Greene MD; Frasch WD
    J Biol Chem; 2003 Dec; 278(51):51594-8. PubMed ID: 14532272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution.
    Kumar A; Manimekalai MS; Balakrishna AM; Jeyakanthan J; Grüber G
    J Mol Biol; 2010 Feb; 396(2):301-20. PubMed ID: 19944110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.