These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30510463)

  • 1. Bayesian inference in time-varying additive hazards models with applications to disease mapping.
    Chernoukhov A; Hussein A; Nkurunziza S; Bandyopadhyay D
    Environmetrics; 2018; 29(5-6):. PubMed ID: 30510463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Semiparametric Bayesian Approach to Heterogeneous Spatial Autoregressive Models.
    Liu T; Xu D; Ke S
    Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-temporal Bayesian accelerated failure time models for survival endpoints with applications to prostate cancer registry data.
    Wang M; Li Z; Lu J; Zhang L; Li Y; Zhang L
    BMC Med Res Methodol; 2024 Apr; 24(1):86. PubMed ID: 38589783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial extended hazard model with application to prostate cancer survival.
    Li L; Hanson T; Zhang J
    Biometrics; 2015 Jun; 71(2):313-22. PubMed ID: 25521422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian variable selection for the Cox regression model with spatially varying coefficients with applications to Louisiana respiratory cancer data.
    Mu J; Liu Q; Kuo L; Hu G
    Biom J; 2021 Dec; 63(8):1607-1622. PubMed ID: 34319616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general semiparametric Bayesian discrete-time recurrent events model.
    King AJ; Weiss RE
    Biostatistics; 2021 Apr; 22(2):266-282. PubMed ID: 31373358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian Semiparametric Temporally-Stratified Proportional Hazards Model with Spatial Frailties.
    Hanson TE; Jara A; Zhao L
    Bayesian Anal; 2011; 6(4):1-48. PubMed ID: 22247752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying Additive Hazards Models for Analyzing Survival in Patients with Colorectal Cancer in Fars Province, Southern Iran.
    Madadizadeh F; Ghanbarnejad A; Ghavami V; Zare Bandamiri M; Mohammadianpanah M
    Asian Pac J Cancer Prev; 2017 Apr; 18(4):1077-1083. PubMed ID: 28547944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian piecewise survival cure rate model for spatially clustered data.
    Hurtado Rúa SM; Dey DK
    Spat Spatiotemporal Epidemiol; 2019 Jun; 29():149-159. PubMed ID: 31128624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Weibull regression model with gamma frailties for multivariate survival data.
    Sahu SK; Dey DK; Aslanidou H; Sinha D
    Lifetime Data Anal; 1997; 3(2):123-37. PubMed ID: 9384618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree-based modeling of time-varying coefficients in discrete time-to-event models.
    Puth MT; Tutz G; Heim N; Münster E; Schmid M; Berger M
    Lifetime Data Anal; 2020 Jul; 26(3):545-572. PubMed ID: 31709472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian negative binomial regression with spatially varying dispersion: Modeling COVID-19 incidence in Georgia.
    Mutiso F; Pearce JL; Benjamin-Neelon SE; Mueller NT; Li H; Neelon B
    Spat Stat; 2022 Dec; 52():100703. PubMed ID: 36168515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of two-phase sampling data with semiparametric additive hazards models.
    Sun Y; Qian X; Shou Q; Gilbert PB
    Lifetime Data Anal; 2017 Jul; 23(3):377-399. PubMed ID: 26995733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An empirical comparison of statistical tests for assessing the proportional hazards assumption of Cox's model.
    Ng'andu NH
    Stat Med; 1997 Mar; 16(6):611-26. PubMed ID: 9131751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical Bayes estimation for additive hazards regression models.
    Sinha D; McHenry MB; Lipsitz SR; Ghosh M
    Biometrika; 2009 Sep; 96(3):545-558. PubMed ID: 23049116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian semiparametric frailty selection in multivariate event time data.
    Cai B
    Biom J; 2010 Apr; 52(2):171-85. PubMed ID: 20358551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian semiparametric dynamic frailty models for multiple event time data.
    Pennell ML; Dunson DB
    Biometrics; 2006 Dec; 62(4):1044-52. PubMed ID: 17156278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations.
    Chaspari T; Tsiartas A; Tsilifis P; Narayanan S
    IEEE Trans Signal Process; 2016 Jun; 64(12):3077-3092. PubMed ID: 28649173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flexible approach to time-varying coefficients in the Cox regression setting.
    Sargent DJ
    Lifetime Data Anal; 1997; 3(1):13-25. PubMed ID: 9384623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.
    Sidén P; Eklund A; Bolin D; Villani M
    Neuroimage; 2017 Feb; 146():211-225. PubMed ID: 27876654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.