These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30510670)

  • 1. An Improved Fuzzy Connectedness Method for Automatic Three-Dimensional Liver Vessel Segmentation in CT Images.
    Zhang R; Zhou Z; Wu W; Lin CC; Tsui PH; Wu S
    J Healthc Eng; 2018; 2018():2376317. PubMed ID: 30510670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular segmentation in hepatic CT images using adaptive threshold fuzzy connectedness method.
    Guo X; Huang S; Fu X; Wang B; Huang X
    Biomed Eng Online; 2015 Jun; 14():57. PubMed ID: 26087652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy
    Wu W; Wu S; Zhou Z; Zhang R; Zhang Y
    Biomed Res Int; 2017; 2017():5207685. PubMed ID: 29090220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple abdominal organ segmentation: an atlas-based fuzzy connectedness approach.
    Zhou Y; Bai J
    IEEE Trans Inf Technol Biomed; 2007 May; 11(3):348-52. PubMed ID: 17521085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
    He B; Huang C; Sharp G; Zhou S; Hu Q; Fang C; Fan Y; Jia F
    Med Phys; 2016 May; 43(5):2421. PubMed ID: 27147353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved parallel fuzzy connected image segmentation method based on CUDA.
    Wang L; Li D; Huang S
    Biomed Eng Online; 2016 May; 15(1):56. PubMed ID: 27175785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method to model hepatic vascular network using vessel segmentation, thinning, and completion.
    Guo X; Xiao R; Zhang T; Chen C; Wang J; Wang Z
    Med Biol Eng Comput; 2020 Apr; 58(4):709-724. PubMed ID: 31955327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of noise reduction and vesselness filters for liver vessel segmentation on abdominal CTA images.
    Luu HM; Klink C; Moelker A; Niessen W; van Walsum T
    Phys Med Biol; 2015 May; 60(10):3905-26. PubMed ID: 25909487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT.
    Yuan Y; Chao M; Sheu RD; Rosenzweig K; Lo YC
    Med Phys; 2015 Jul; 42(7):4015-26. PubMed ID: 26133602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D automatic liver segmentation using feature-constrained Mahalanobis distance in CT images.
    Salman Al-Shaikhli SD; Yang MY; Rosenhahn B
    Biomed Tech (Berl); 2016 Aug; 61(4):401-12. PubMed ID: 26501155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic liver vessel segmentation using 3D region growing and hybrid active contour model.
    Zeng YZ; Liao SH; Tang P; Zhao YQ; Liao M; Chen Y; Liang YX
    Comput Biol Med; 2018 Jun; 97():63-73. PubMed ID: 29709715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of fuzzy connectedness in 3D blood vessel extraction.
    Lv X; Zou H
    Int J Bioinform Res Appl; 2010; 6(5):461-71. PubMed ID: 21224204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coronary artery segmentation and skeletonization based on competing fuzzy connectedness tree.
    Wang C; Smedby O
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):311-8. PubMed ID: 18051073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamic segmentation based on improved fuzzy connectedness in structural MRI.
    Yang C; Wang Q; Wu W; Xue Y; Lu W; Wu S
    Comput Biol Med; 2015 Nov; 66():222-34. PubMed ID: 26433197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights.
    Forkert ND; Schmidt-Richberg A; Fiehler J; Illies T; Möller D; Säring D; Handels H; Ehrhardt J
    Magn Reson Imaging; 2013 Feb; 31(2):262-71. PubMed ID: 22917500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood vessel-based liver segmentation using the portal phase of an abdominal CT dataset.
    Maklad AS; Matsuhiro M; Suzuki H; Kawata Y; Niki N; Satake M; Moriyama N; Utsunomiya T; Shimada M
    Med Phys; 2013 Nov; 40(11):113501. PubMed ID: 24320472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust liver vessel extraction using 3D U-Net with variant dice loss function.
    Huang Q; Sun J; Ding H; Wang X; Wang G
    Comput Biol Med; 2018 Oct; 101():153-162. PubMed ID: 30144657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automatic liver segmentation in CT images using modified graph cuts and feature detection.
    Huang Q; Ding H; Wang X; Wang G
    Comput Biol Med; 2018 Apr; 95():198-208. PubMed ID: 29524804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.
    Wang J; Cheng Y; Guo C; Wang Y; Tamura S
    Int J Comput Assist Radiol Surg; 2016 May; 11(5):817-26. PubMed ID: 26646416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic 3D liver location and segmentation via convolutional neural network and graph cut.
    Lu F; Wu F; Hu P; Peng Z; Kong D
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):171-182. PubMed ID: 27604760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.