These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 30511205)
1. Augmented visualization with depth perception cues to improve the surgeon's performance in minimally invasive surgery. De Paolis LT; De Luca V Med Biol Eng Comput; 2019 May; 57(5):995-1013. PubMed ID: 30511205 [TBL] [Abstract][Full Text] [Related]
2. 3D mixed-reality visualization of medical imaging data as a supporting tool for innovative, minimally invasive surgery for gastrointestinal tumors and systemic treatment as a new path in personalized treatment of advanced cancer diseases. Wierzbicki R; Pawłowicz M; Job J; Balawender R; Kostarczyk W; Stanuch M; Janc K; Skalski A J Cancer Res Clin Oncol; 2022 Jan; 148(1):237-243. PubMed ID: 34110490 [TBL] [Abstract][Full Text] [Related]
3. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality. Chen L; Tang W; John NW; Wan TR; Zhang JJ Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779 [TBL] [Abstract][Full Text] [Related]
4. Minimally invasive and invasive liver surgery based on augmented reality training: a review of the literature. Gholizadeh M; Bakhshali MA; Mazlooman SR; Aliakbarian M; Gholizadeh F; Eslami S; Modrzejewski A J Robot Surg; 2023 Jun; 17(3):753-763. PubMed ID: 36441418 [TBL] [Abstract][Full Text] [Related]
5. Virtual and Augmented Reality in Oncologic Liver Surgery. Quero G; Lapergola A; Soler L; Shahbaz M; Hostettler A; Collins T; Marescaux J; Mutter D; Diana M; Pessaux P Surg Oncol Clin N Am; 2019 Jan; 28(1):31-44. PubMed ID: 30414680 [TBL] [Abstract][Full Text] [Related]
6. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery. Buchs NC; Volonte F; Pugin F; Toso C; Fusaglia M; Gavaghan K; Majno PE; Peterhans M; Weber S; Morel P J Surg Res; 2013 Oct; 184(2):825-31. PubMed ID: 23684617 [TBL] [Abstract][Full Text] [Related]
7. Stereoscopic augmented reality for laparoscopic surgery. Kang X; Azizian M; Wilson E; Wu K; Martin AD; Kane TD; Peters CA; Cleary K; Shekhar R Surg Endosc; 2014 Jul; 28(7):2227-35. PubMed ID: 24488352 [TBL] [Abstract][Full Text] [Related]
8. Design and Validation of a Spinal Surgical Navigation System Based on Spatial Augmented Reality. Xu B; Yang Z; Jiang S; Zhou Z; Jiang B; Yin S Spine (Phila Pa 1976); 2020 Dec; 45(23):E1627-E1633. PubMed ID: 32833931 [TBL] [Abstract][Full Text] [Related]
9. Mixed Reality in Visceral Surgery: Development of a Suitable Workflow and Evaluation of Intraoperative Use-cases. Sauer IM; Queisner M; Tang P; Moosburner S; Hoepfner O; Horner R; Lohmann R; Pratschke J Ann Surg; 2017 Nov; 266(5):706-712. PubMed ID: 28767561 [TBL] [Abstract][Full Text] [Related]
10. Augmented reality navigation for minimally invasive knee surgery using enhanced arthroscopy. Chen F; Cui X; Han B; Liu J; Zhang X; Liao H Comput Methods Programs Biomed; 2021 Apr; 201():105952. PubMed ID: 33561710 [TBL] [Abstract][Full Text] [Related]
11. Handling topological changes during elastic registration : Application to augmented reality in laparoscopic surgery. Paulus CJ; Haouchine N; Kong SH; Soares RV; Cazier D; Cotin S Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):461-470. PubMed ID: 27943043 [TBL] [Abstract][Full Text] [Related]
12. Robust augmented reality registration method for localization of solid organs' tumors using CT-derived virtual biomechanical model and fluorescent fiducials. Kong SH; Haouchine N; Soares R; Klymchenko A; Andreiuk B; Marques B; Shabat G; Piechaud T; Diana M; Cotin S; Marescaux J Surg Endosc; 2017 Jul; 31(7):2863-2871. PubMed ID: 27796600 [TBL] [Abstract][Full Text] [Related]
13. Depth Perception of Surgeons in Minimally Invasive Surgery. Bogdanova R; Boulanger P; Zheng B Surg Innov; 2016 Oct; 23(5):515-24. PubMed ID: 27009686 [TBL] [Abstract][Full Text] [Related]
14. Experimental Setup Employed in the Operating Room Based on Virtual and Mixed Reality: Analysis of Pros and Cons in Open Abdomen Surgery. Galati R; Simone M; Barile G; De Luca R; Cartanese C; Grassi G J Healthc Eng; 2020; 2020():8851964. PubMed ID: 32832048 [TBL] [Abstract][Full Text] [Related]
16. Augmented reality to the rescue of the minimally invasive surgeon. The usefulness of the interposition of stereoscopic images in the Da Vinci™ robotic console. Volonté F; Buchs NC; Pugin F; Spaltenstein J; Schiltz B; Jung M; Hagen M; Ratib O; Morel P Int J Med Robot; 2013 Sep; 9(3):e34-8. PubMed ID: 23239589 [TBL] [Abstract][Full Text] [Related]
17. Augmented reality navigation for liver resection with a stereoscopic laparoscope. Luo H; Yin D; Zhang S; Xiao D; He B; Meng F; Zhang Y; Cai W; He S; Zhang W; Hu Q; Guo H; Liang S; Zhou S; Liu S; Sun L; Guo X; Fang C; Liu L; Jia F Comput Methods Programs Biomed; 2020 Apr; 187():105099. PubMed ID: 31601442 [TBL] [Abstract][Full Text] [Related]
18. Technology improvements for image-guided and minimally invasive spine procedures. Cleary K; Clifford M; Stoianovici D; Freedman M; Mun SK; Watson V IEEE Trans Inf Technol Biomed; 2002 Dec; 6(4):249-61. PubMed ID: 15224839 [TBL] [Abstract][Full Text] [Related]
19. An augmented reality navigation system for pediatric oncologic surgery based on preoperative CT and MRI images. Souzaki R; Ieiri S; Uemura M; Ohuchida K; Tomikawa M; Kinoshita Y; Koga Y; Suminoe A; Kohashi K; Oda Y; Hara T; Hashizume M; Taguchi T J Pediatr Surg; 2013 Dec; 48(12):2479-83. PubMed ID: 24314190 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional laparoscopy: a new tool in the surgeon's armamentarium. Buchs NC; Morel P Surg Technol Int; 2013 Sep; 23():19-22. PubMed ID: 23700184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]