BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30511403)

  • 1. Quantitative display of the redox status of proteins with maleimide-polyethylene glycol tagging.
    Lee YJ; Chang GD
    Electrophoresis; 2019 Feb; 40(4):491-498. PubMed ID: 30511403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PEG-switch assay: a fast semi-quantitative method to determine protein reversible cysteine oxidation.
    Burgoyne JR; Oviosu O; Eaton P
    J Pharmacol Toxicol Methods; 2013; 68(3):297-301. PubMed ID: 23856010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development and application of a novel thiol labeling reagent for protein thiol analysis].
    Tatenaka Y
    Nihon Yakurigaku Zasshi; 2018; 152(5):223-226. PubMed ID: 30393253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct determination of the redox status of cysteine residues in proteins in vivo.
    Hara S; Tatenaka Y; Ohuchi Y; Hisabori T
    Biochem Biophys Res Commun; 2015 Jan; 456(1):339-43. PubMed ID: 25436431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Click-PEGylation - A mobility shift approach to assess the redox state of cysteines in candidate proteins.
    van Leeuwen LAG; Hinchy EC; Murphy MP; Robb EL; Cochemé HM
    Free Radic Biol Med; 2017 Jul; 108():374-382. PubMed ID: 28366801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of PEG chain in routine SDS-PAGE analysis of PEG-maleimide modified protein.
    Zhang C; Liu Y; Feng C; Wang Q; Shi H; Zhao D; Yu R; Su Z
    Electrophoresis; 2015 Jan; 36(2):371-4. PubMed ID: 25265901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfhydryl Labeling as a Tool to Investigate the Topology of Membrane Proteins Involved in Lipopolysaccharide Biosynthesis.
    Tavares-Carreón F; Ruan X; Ford A; Valvano MA
    Methods Mol Biol; 2019; 1954():203-213. PubMed ID: 30864134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization.
    Sun XZ; Vinci C; Makmura L; Han S; Tran D; Nguyen J; Hamann M; Grazziani S; Sheppard S; Gutova M; Zhou F; Thomas J; Momand J
    Antioxid Redox Signal; 2003 Oct; 5(5):655-65. PubMed ID: 14580323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Protein Carbonylation and Protein Tyrosine Phosphatase (PTP) Oxidation in Vascular Smooth Muscle Cells (VSMCs) Using Immunoblotting Approaches.
    Tsiropoulou S; Touyz RM
    Methods Mol Biol; 2017; 1614():31-46. PubMed ID: 28500593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of site-specific ScFv PEGylation for tumor-targeting pharmaceuticals.
    Natarajan A; Xiong CY; Albrecht H; DeNardo GL; DeNardo SJ
    Bioconjug Chem; 2005; 16(1):113-21. PubMed ID: 15656582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a sensitive assay to detect reversibly oxidized protein cysteine sulfhydryl groups.
    Makmura L; Hamann M; Areopagita A; Furuta S; Muñoz A; Momand J
    Antioxid Redox Signal; 2001 Dec; 3(6):1105-18. PubMed ID: 11813984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin-1 PEGylation as an In Vitro Method for Drug Target Identification.
    Skalska J
    Methods Mol Biol; 2019; 1990():143-149. PubMed ID: 31148069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of PEG-maleimide ligands and coupling efficiencies on nanoparticles with Ellman's reagent.
    Moser M; Behnke T; Hamers-Allin C; Klein-Hartwig K; Falkenhagen J; Resch-Genger U
    Anal Chem; 2015 Sep; 87(18):9376-83. PubMed ID: 26284998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast-Forming Dissolvable Redox-Responsive Hydrogels: Exploiting the Orthogonality of Thiol-Maleimide and Thiol-Disulfide Exchange Chemistry.
    Altinbasak I; Kocak S; Sanyal R; Sanyal A
    Biomacromolecules; 2022 Sep; 23(9):3525-3534. PubMed ID: 35696518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porphyrinmaleimides: towards thiol probes for cysteine residues in proteins.
    Chen Y; Parr T; Holmes AE; Nakanishi K
    Bioconjug Chem; 2008 Jan; 19(1):5-9. PubMed ID: 18067244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection of a single-cysteine redox switch from oxidative destruction: On the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B.
    Sivaramakrishnan S; Cummings AH; Gates KS
    Bioorg Med Chem Lett; 2010 Jan; 20(2):444-7. PubMed ID: 20015650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the proton channels in subunit N of Complex I from Escherichia coli through intra-subunit cross-linking.
    Tursun A; Zhu S; Vik SB
    Biochim Biophys Acta; 2016 Dec; 1857(12):1840-1848. PubMed ID: 27632419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.