These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30511647)
1. An analytical solution for temperature distributions in hepatic radiofrequency ablation incorporating the heat-sink effect of large vessels. Chen R; Lu F; Wu F; Jiang T; Xie L; Kong D Phys Med Biol; 2018 Dec; 63(23):235026. PubMed ID: 30511647 [TBL] [Abstract][Full Text] [Related]
2. Heat sink effect on tumor ablation characteristics as observed in monopolar radiofrequency, bipolar radiofrequency, and microwave, using ex vivo calf liver model. Pillai K; Akhter J; Chua TC; Shehata M; Alzahrani N; Al-Alem I; Morris DL Medicine (Baltimore); 2015 Mar; 94(9):e580. PubMed ID: 25738477 [TBL] [Abstract][Full Text] [Related]
3. Heat sink phenomenon of bipolar and monopolar radiofrequency ablation observed using polypropylene tubes for vessel simulation. Al-Alem I; Pillai K; Akhter J; Chua TC; Morris DL Surg Innov; 2014 Jun; 21(3):269-76. PubMed ID: 24132470 [TBL] [Abstract][Full Text] [Related]
4. Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Huang HW Med Phys; 2013 Jul; 40(7):073303. PubMed ID: 23822457 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the Heat Sink Effect After Transarterial Embolization When Performed in Combination with Thermal Ablation of the Liver in a Rabbit Model. Puza CJ; Wang Q; Kim CY Cardiovasc Intervent Radiol; 2018 Nov; 41(11):1773-1778. PubMed ID: 30039505 [TBL] [Abstract][Full Text] [Related]
6. A study of the sink effect by blood vessels in radiofrequency ablation. Zorbas G; Samaras T Comput Biol Med; 2015 Feb; 57():182-6. PubMed ID: 25575184 [TBL] [Abstract][Full Text] [Related]
7. Fast calculation of 3D radiofrequency ablation zone based on a closed-form solution of heat conduction equation fitted by ex vivo measurements. Chen R; Zhang J; Kong D; Lou Q; Lu F Phys Med Biol; 2021 Feb; 66(5):055022. PubMed ID: 33503590 [TBL] [Abstract][Full Text] [Related]
9. Numerical evaluation of ablation zone under different tip temperatures during radiofrequency ablation. Wang XR; Gao HJ; Wu SC; Jiang T; Zhou ZH; Bai YP Math Biosci Eng; 2019 Mar; 16(4):2514-2531. PubMed ID: 31137225 [TBL] [Abstract][Full Text] [Related]
10. Radiofrequency ablation for liver tumors abutting complex blood vessel structures: treatment protocol optimization using response surface method and computer modeling. Fang Z; Wei H; Zhang H; Moser MAJ; Zhang W; Qian Z; Zhang B Int J Hyperthermia; 2022; 39(1):733-742. PubMed ID: 35610101 [TBL] [Abstract][Full Text] [Related]
11. Protective and Heat Retention Effects of Thermo-sensitive Basement Membrane Extract (Matrigel) in Hepatic Radiofrequency Ablation in an Experimental Animal Study. Fu JJ; Wang S; Yang W; Gong W; Jiang AN; Yan K; Chen MH Cardiovasc Intervent Radiol; 2017 Jul; 40(7):1077-1085. PubMed ID: 28271330 [TBL] [Abstract][Full Text] [Related]
12. Pennes' bioheat equation vs. porous media approach in computer modeling of radiofrequency tumor ablation. Tucci C; Trujillo M; Berjano E; Iasiello M; Andreozzi A; Vanoli GP Sci Rep; 2021 Mar; 11(1):5272. PubMed ID: 33674658 [TBL] [Abstract][Full Text] [Related]
13. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue. Shrivastava D; Roemer RB Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387 [TBL] [Abstract][Full Text] [Related]
14. Thermographic real-time-monitoring of surgical radiofrequency and microwave ablation in a perfused porcine liver model. Primavesi F; Swierczynski S; Klieser E; Kiesslich T; Jäger T; Urbas R; Hutter J; Neureiter D; Öfner D; Stättner S Oncol Lett; 2018 Mar; 15(3):2913-2920. PubMed ID: 29435018 [TBL] [Abstract][Full Text] [Related]
15. Multipolar RFA of the liver: Influence of intrahepatic vessels on ablation zones and appropriateness of CECT in detecting ablation dimensions - Results of an in-vivo porcine liver model. Vahldiek JL; Erxleben C; Bressem KK; Gemeinhardt O; Poch F; Hiebl B; Lehmann KS; Hamm B; Niehues SM Clin Hemorheol Microcirc; 2018; 70(4):467-476. PubMed ID: 30347610 [TBL] [Abstract][Full Text] [Related]
16. Simulation study of the cooling effect of blood vessels and blood coagulation in hepatic radio-frequency ablation. Vaidya N; Baragona M; Lavezzo V; Maessen R; Veroy K Int J Hyperthermia; 2021; 38(1):95-104. PubMed ID: 33530763 [TBL] [Abstract][Full Text] [Related]
17. Study of flow effects on temperature-controlled radiofrequency ablation using phantom experiments and forward simulations. Nolte T; Vaidya N; Baragona M; Elevelt A; Lavezzo V; Maessen R; Schulz V; Veroy K Med Phys; 2021 Sep; 48(9):4754-4768. PubMed ID: 34320224 [TBL] [Abstract][Full Text] [Related]
18. Numerical study to establish relationship between coagulation volume and target tip temperature during temperature-controlled radiofrequency ablation. Singh S; Repaka R Electromagn Biol Med; 2018; 37(1):13-22. PubMed ID: 29308914 [TBL] [Abstract][Full Text] [Related]
19. Analysis and analytical characterization of bioheat transfer during radiofrequency ablation. Wang K; Tavakkoli F; Wang S; Vafai K J Biomech; 2015 Apr; 48(6):930-40. PubMed ID: 25769731 [TBL] [Abstract][Full Text] [Related]
20. Heat transfer analysis of skin during thermal therapy using thermal wave equation. Kashcooli M; Salimpour MR; Shirani E J Therm Biol; 2017 Feb; 64():7-18. PubMed ID: 28166948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]