These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30511715)

  • 1. Measurement of the thermal conductivities of suspended MoS
    Wang R; Wang T; Zobeiri H; Yuan P; Deng C; Yue Y; Xu S; Wang X
    Nanoscale; 2018 Dec; 10(48):23087-23102. PubMed ID: 30511715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonmonotonic thickness-dependence of in-plane thermal conductivity of few-layered MoS
    Yuan P; Wang R; Wang T; Wang X; Xie Y
    Phys Chem Chem Phys; 2018 Oct; 20(40):25752-25761. PubMed ID: 30283921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS2 and MoSe2 Using Refined Optothermal Raman Technique.
    Zhang X; Sun D; Li Y; Lee GH; Cui X; Chenet D; You Y; Heinz TF; Hone JC
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25923-9. PubMed ID: 26517143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing Optical and Acoustic Phonon Temperatures and Their Energy Coupling Factor under Photon Excitation in nm 2D Materials.
    Wang R; Zobeiri H; Xie Y; Wang X; Zhang X; Yue Y
    Adv Sci (Weinh); 2020 Jul; 7(13):2000097. PubMed ID: 32670758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The in-plane structure domain size of nm-thick MoSe
    Lin H; Wang R; Zobeiri H; Wang T; Xu S; Wang X
    Nanoscale; 2021 Apr; 13(16):7723-7734. PubMed ID: 33928955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal conductance between water and nm-thick WS
    Zobeiri H; Hunter N; Wang R; Liu X; Tan H; Xu S; Wang X
    Nanoscale Adv; 2020 Dec; 2(12):5821-5832. PubMed ID: 36133876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thickness-dependent in-plane thermal conductivity of suspended MoS
    Bae JJ; Jeong HY; Han GH; Kim J; Kim H; Kim MS; Moon BH; Lim SC; Lee YH
    Nanoscale; 2017 Feb; 9(7):2541-2547. PubMed ID: 28150838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical problems faced in Raman-based energy transport characterization of nanomaterials.
    Wang R; Hunter N; Zobeiri H; Xu S; Wang X
    Phys Chem Chem Phys; 2022 Sep; 24(37):22390-22404. PubMed ID: 35942687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles calculations of thermal transport properties in MoS
    Ma JJ; Zheng JJ; Zhu XL; Liu PF; Li WD; Wang BT
    Phys Chem Chem Phys; 2019 May; 21(20):10442-10448. PubMed ID: 31066395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method.
    Li QY; Xia K; Zhang J; Zhang Y; Li Q; Takahashi K; Zhang X
    Nanoscale; 2017 Aug; 9(30):10784-10793. PubMed ID: 28726940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.
    Late DJ; Shirodkar SN; Waghmare UV; Dravid VP; Rao CN
    Chemphyschem; 2014 Jun; 15(8):1592-8. PubMed ID: 24692405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon and Thermal Properties of Quasi-Two-Dimensional FePS
    Kargar F; Coleman EA; Ghosh S; Lee J; Gomez MJ; Liu Y; Magana AS; Barani Z; Mohammadzadeh A; Debnath B; Wilson RB; Lake RK; Balandin AA
    ACS Nano; 2020 Feb; 14(2):2424-2435. PubMed ID: 31951116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling Heat Transport and Dissipation in Suspended MoSe
    Saleta Reig D; Varghese S; Farris R; Block A; Mehew JD; Hellman O; Woźniak P; Sledzinska M; El Sachat A; Chávez-Ángel E; Valenzuela SO; van Hulst NF; Ordejón P; Zanolli Z; Sotomayor Torres CM; Verstraete MJ; Tielrooij KJ
    Adv Mater; 2022 Mar; 34(10):e2108352. PubMed ID: 34981868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling Thermal Transport Properties of MoTe
    Rodriguez-Fernandez C; Nieminen A; Ahmed F; Pietila J; Lipsanen H; Caglayan H
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):35692-35700. PubMed ID: 37435778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers.
    Najmaei S; Ajayan PM; Lou J
    Nanoscale; 2013 Oct; 5(20):9758-63. PubMed ID: 23963480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus.
    Luo Z; Maassen J; Deng Y; Du Y; Garrelts RP; Lundstrom MS; Ye PD; Xu X
    Nat Commun; 2015 Oct; 6():8572. PubMed ID: 26472191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy.
    Yan R; Simpson JR; Bertolazzi S; Brivio J; Watson M; Wu X; Kis A; Luo T; Hight Walker AR; Xing HG
    ACS Nano; 2014 Jan; 8(1):986-93. PubMed ID: 24377295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and Computational Investigation of Layer-Dependent Thermal Conductivities and Interfacial Thermal Conductance of One- to Three-Layer WSe
    Easy E; Gao Y; Wang Y; Yan D; Goushehgir SM; Yang EH; Xu B; Zhang X
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13063-13071. PubMed ID: 33720683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
    Sahoo S; Chitturi VR; Agarwal R; Jiang JW; Katiyar RS
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19958-65. PubMed ID: 25350877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.