These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30511773)

  • 21. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient.
    Zhang B; Lei Q; Wang Z; Zhang X
    Langmuir; 2016 Jan; 32(1):346-51. PubMed ID: 26669260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Droplet impact on soft viscoelastic surfaces.
    Chen L; Bonaccurso E; Deng P; Zhang H
    Phys Rev E; 2016 Dec; 94(6-1):063117. PubMed ID: 28085484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.
    Banuprasad TN; Vinay TV; Subash CK; Varghese S; George SD; Varanakkottu SN
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28046-28054. PubMed ID: 28750164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants.
    Zhang J; Liu H; Ba Y
    Langmuir; 2019 Jun; 35(24):7858-7870. PubMed ID: 31120757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of blood flow through a capillary using a non-linear viscoelastic model.
    Shariatkhah A; Norouzi M; Nobari MR
    Clin Hemorheol Microcirc; 2016; 62(2):109-21. PubMed ID: 26410863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of viscoelastic fluid response to external body force.
    Zhang M; Zhang W; Wu Z; Shen Y; Wu H; Cheng J; Zhang H; Li F; Cai W
    Sci Rep; 2019 Jun; 9(1):9402. PubMed ID: 31253813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field-Induced Wettability Gradients for No-Loss Transport of Oil Droplets on Slippery Surfaces.
    Tang B; Meng C; Zhuang L; Groenewold J; Qian Y; Sun Z; Liu X; Gao J; Zhou G
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38723-38729. PubMed ID: 32846489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.
    Lan C; Pal S; Li Z; Ma Y
    Langmuir; 2015 Sep; 31(35):9636-45. PubMed ID: 26241832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motion of a droplet through microfluidic ratchets.
    Liu J; Yap YF; Nguyen NT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046319. PubMed ID: 19905448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate Wettability Influences Internal Jet Formation and Mixing during Droplet Coalescence.
    Sykes TC; Harbottle D; Khatir Z; Thompson HM; Wilson MCT
    Langmuir; 2020 Aug; 36(32):9596-9607. PubMed ID: 32787133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamic wetting of viscoelastic droplets.
    Wang Y; Minh DQ; Amberg G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043002. PubMed ID: 26565327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of 3D dewetting nanodroplets on homogeneous and chemically heterogeneous substrates.
    Asgari M; Moosavi A
    J Phys Condens Matter; 2014 Jun; 26(22):225001. PubMed ID: 24810372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Instability and dynamics of thin viscoelastic liquid films.
    Tomar G; Shankar V; Shukla SK; Sharma A; Biswas G
    Eur Phys J E Soft Matter; 2006 Jun; 20(2):185-200. PubMed ID: 16786198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shear Waves Reveal Viscoelastic Changes in Skeletal Muscles After Hemispheric Stroke.
    Rasool G; Wang AB; Rymer WZ; Lee SSM
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2006-2014. PubMed ID: 30334740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Principles of droplet electrohydrodynamics for lab-on-a-chip.
    Zeng J; Korsmeyer T
    Lab Chip; 2004 Aug; 4(4):265-77. PubMed ID: 15269791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lateral motion of a droplet impacting on a wettability-patterned surface: numerical and theoretical studies.
    Zhang T; Wu J; Lin X
    Soft Matter; 2021 Jan; 17(3):724-737. PubMed ID: 33220671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of viscoelasticity on shear-thickening in dilute suspensions in a viscoelastic fluid.
    Matsuoka Y; Nakayama Y; Kajiwara T
    Soft Matter; 2020 Jan; 16(3):728-737. PubMed ID: 31825055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled directional water-droplet spreading on a high-adhesion surface.
    Feng S; Wang S; Gao L; Li G; Hou Y; Zheng Y
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6163-7. PubMed ID: 24821428
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.