BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30511837)

  • 21. Nitrous Oxide Production in Co- Versus Counter-Diffusion Nitrifying Biofilms.
    Peng L; Sun J; Liu Y; Dai X; Ni BJ
    Sci Rep; 2016 Jun; 6():28880. PubMed ID: 27353382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the COD/NO3(-)-N ratio and pH on the accumulation of denitrification intermediates with available pyridine as a sole electron donor and carbon source.
    Li YM; Li J; Zheng GH; Luan JF; Fu QS; Gu GW
    Environ Technol; 2008 Dec; 29(12):1297-306. PubMed ID: 19149351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess.
    Gao H; Mao Y; Zhao X; Liu WT; Zhang T; Wells G
    Water Res; 2019 May; 155():275-287. PubMed ID: 30852315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of Nitrous Oxide (N
    Perez-Garcia O; Mankelow C; Chandran K; Villas-Boas SG; Singhal N
    Environ Sci Technol; 2017 Dec; 51(23):13678-13688. PubMed ID: 29083886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Counter-diffusion biofilms have lower N
    Kinh CT; Suenaga T; Hori T; Riya S; Hosomi M; Smets BF; Terada A
    Water Res; 2017 Nov; 124():363-371. PubMed ID: 28780360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Weak magnetic carriers reduce nitrite accumulation and boost denitrification at high nitrate concentrations by enriching functional bacteria and enhancing electron transfer.
    Chen J; Ma S; Wang H; Wang Y; Ren H; Xu K
    J Environ Manage; 2024 Feb; 351():119734. PubMed ID: 38071915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing waste molasses utilization to enhance electron transfer via micromagnetic carriers: Mechanisms and high-nitrate wastewater denitrification performance.
    Chen J; Xue Y; Yang D; Ma S; Lin Y; Wang H; Wang Y; Ren H; Xu K
    Environ Res; 2024 Feb; 242():117709. PubMed ID: 37993049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions.
    Wunderlin P; Mohn J; Joss A; Emmenegger L; Siegrist H
    Water Res; 2012 Mar; 46(4):1027-37. PubMed ID: 22227243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Achieving partial denitrification through control of biofilm structure during biofilm growth in denitrifying biofilter.
    Cui B; Liu X; Yang Q; Li J; Zhou X; Peng Y
    Bioresour Technol; 2017 Aug; 238():223-231. PubMed ID: 28433912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic regulation of N
    Yang R; Yuan L; Wang R
    Sci Total Environ; 2022 Nov; 846():157513. PubMed ID: 35872196
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study.
    Sabba F; Picioreanu C; Pérez J; Nerenberg R
    Environ Sci Technol; 2015 Feb; 49(3):1486-94. PubMed ID: 25539140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfur-based denitrification: Effect of biofilm development on denitrification fluxes.
    Wang Y; Bott C; Nerenberg R
    Water Res; 2016 Sep; 100():184-193. PubMed ID: 27187050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption.
    Li M; Su Y; Chen Y; Wan R; Zheng X; Liu K
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5607-18. PubMed ID: 26894403
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using kinetics and modeling to predict denitrification fluxes in elemental-sulfur-based biofilms.
    Wang Y; Sabba F; Bott C; Nerenberg R
    Biotechnol Bioeng; 2019 Oct; 116(10):2698-2709. PubMed ID: 31225637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterotrophic denitrifiers growing on soluble microbial products contribute to nitrous oxide production in anammox biofilm: Model evaluation.
    Peng L; Ngo HH; Song S; Xu Y; Guo W; Liu Y; Wei W; Chen X; Wang D; Ni BJ
    J Environ Manage; 2019 Jul; 242():309-314. PubMed ID: 31054395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling Denitrification as an Electric Circuit Accurately Captures Electron Competition between Individual Reductive Steps: The Activated Sludge Model-Electron Competition Model.
    Domingo-Félez C; Smets BF
    Environ Sci Technol; 2020 Jun; 54(12):7330-7338. PubMed ID: 32428412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system.
    Wei Y; Wang S; Ma B; Li X; Yuan Z; He Y; Peng Y
    Bioresour Technol; 2014 Oct; 170():175-182. PubMed ID: 25129233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrous oxide generation in denitrifying phosphorus removal process: main causes and control measures.
    Li C; Zhang J; Liang S; Ngo HH; Guo W; Zhang Y; Zou Y
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5353-60. PubMed ID: 23407928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of denitrification performance with reduction of nitrite accumulation and N
    Jiang M; Zheng X; Chen Y
    Water Res; 2020 Feb; 169():115242. PubMed ID: 31706124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing Intermediate Formation and Electron Competition during Thiosulfate-Driven Denitrification: An Experimental and Modeling Study.
    Yang Y; Perez Calleja P; Liu Y; Nerenberg R; Chai H
    Environ Sci Technol; 2022 Aug; 56(16):11760-11770. PubMed ID: 35921133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.