These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30511858)

  • 1. msCRUSH: Fast Tandem Mass Spectral Clustering Using Locality Sensitive Hashing.
    Wang L; Li S; Tang H
    J Proteome Res; 2019 Jan; 18(1):147-158. PubMed ID: 30511858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fast and Memory-Efficient Spectral Library Search Algorithm Using Locality-Sensitive Hashing.
    Wang L; Liu K; Li S; Tang H
    Proteomics; 2020 Nov; 20(21-22):e2000002. PubMed ID: 32415809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering millions of tandem mass spectra.
    Frank AM; Bandeira N; Shen Z; Tanner S; Briggs SP; Smith RD; Pevzner PA
    J Proteome Res; 2008 Jan; 7(1):113-22. PubMed ID: 18067247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
    Rieder V; Schork KU; Kerschke L; Blank-Landeshammer B; Sickmann A; Rahnenführer J
    J Proteome Res; 2017 Nov; 16(11):4035-4044. PubMed ID: 28959885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClusterSheep: A Graphics Processing Unit-Accelerated Software Tool for Large-Scale Clustering of Tandem Mass Spectra from Shotgun Proteomics.
    To PKP; Wu L; Chan CM; Hoque A; Lam H
    J Proteome Res; 2021 Dec; 20(12):5359-5367. PubMed ID: 34734728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced peptide quantification using spectral count clustering and cluster abundance.
    Lee S; Kwon MS; Lee HJ; Paik YK; Tang H; Lee JK; Park T
    BMC Bioinformatics; 2011 Oct; 12():423. PubMed ID: 22034872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative database search engine analysis on massive tandem mass spectra of pork-based food products for halal proteomics.
    Amir SH; Yuswan MH; Aizat WM; Mansor MK; Desa MNM; Yusof YA; Song LK; Mustafa S
    J Proteomics; 2021 Jun; 241():104240. PubMed ID: 33894373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering and filtering tandem mass spectra acquired in data-independent mode.
    Pak H; Nikitin F; Gluck F; Lisacek F; Scherl A; Muller M
    J Am Soc Mass Spectrom; 2013 Dec; 24(12):1862-71. PubMed ID: 24006250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral library searching for peptide identification via tandem MS.
    Lam H; Aebersold R
    Methods Mol Biol; 2010; 604():95-103. PubMed ID: 20013366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HyperSpec: Ultrafast Mass Spectra Clustering in Hyperdimensional Space.
    Xu W; Kang J; Bittremieux W; Moshiri N; Rosing T
    J Proteome Res; 2023 Jun; 22(6):1639-1648. PubMed ID: 37166120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.
    Heaven MR; Cobbs AL; Nei YW; Gutierrez DB; Herren AW; Gunawardena HP; Caprioli RM; Norris JL
    Anal Chem; 2018 Aug; 90(15):8905-8911. PubMed ID: 29984981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MaRaCluster: A Fragment Rarity Metric for Clustering Fragment Spectra in Shotgun Proteomics.
    The M; Käll L
    J Proteome Res; 2016 Mar; 15(3):713-20. PubMed ID: 26653874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pClean: An Algorithm To Preprocess High-Resolution Tandem Mass Spectra for Database Searching.
    Deng Y; Ren Z; Pan Q; Qi D; Wen B; Ren Y; Yang H; Wu L; Chen F; Liu S
    J Proteome Res; 2019 Sep; 18(9):3235-3244. PubMed ID: 31364357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
    Tu C; Sheng Q; Li J; Ma D; Shen X; Wang X; Shyr Y; Yi Z; Qu J
    J Proteome Res; 2015 Nov; 14(11):4662-73. PubMed ID: 26390080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic noise level algorithm for spectral screening of peptide MS/MS spectra.
    Xu H; Freitas MA
    BMC Bioinformatics; 2010 Aug; 11():436. PubMed ID: 20731867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial decoy spectral libraries for false discovery rate estimation in spectral library searching in proteomics.
    Lam H; Deutsch EW; Aebersold R
    J Proteome Res; 2010 Jan; 9(1):605-10. PubMed ID: 19916561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation and application of a versatile clustering tool for tandem mass spectrometry data.
    Flikka K; Meukens J; Helsens K; Vandekerckhove J; Eidhammer I; Gevaert K; Martens L
    Proteomics; 2007 Sep; 7(18):3245-58. PubMed ID: 17708593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra.
    Silva ARF; Lima DB; Kurt LU; Dupré M; Chamot-Rooke J; Santos MDM; Nicolau CA; Valente RH; Barbosa VC; Carvalho PC
    J Proteomics; 2021 Aug; 245():104282. PubMed ID: 34089898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The spectral networks paradigm in high throughput mass spectrometry.
    Guthals A; Watrous JD; Dorrestein PC; Bandeira N
    Mol Biosyst; 2012 Oct; 8(10):2535-44. PubMed ID: 22610447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.