BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30512974)

  • 1. An Investigation of the Role of Macular Pigment in Attenuating Photostress through Comparison between Blue and Green Photostress Recovery Times.
    Tavazzi S; Perego F; Ferraro L; Acciarri M; Zeri F
    Curr Eye Res; 2019 Apr; 44(4):399-405. PubMed ID: 30512974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Blue-blocking Lenses on Photostress Recovery Times.
    Alzahrani HS; Khuu SK; Ali A; Roy M
    Optom Vis Sci; 2020 Nov; 97(11):995-1004. PubMed ID: 33181732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The glare hypothesis of macular pigment function.
    Stringham JM; Hammond BR
    Optom Vis Sci; 2007 Sep; 84(9):859-64. PubMed ID: 17873771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a novel smartphone-based photostress recovery time test for detecting abnormalities in the macula. A cross-sectional study.
    Karampatakis V; Almaliotis D; Papadopoulou EP; Almpanidou S
    Ann Med Surg (Lond); 2022 May; 77():103699. PubMed ID: 35638075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macular pigment and visual performance in glare: benefits for photostress recovery, disability glare, and visual discomfort.
    Stringham JM; Garcia PV; Smith PA; McLin LN; Foutch BK
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7406-15. PubMed ID: 21296819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size of the foveal blue scotoma related to the shape of the foveal pit but not to macular pigment.
    Chen Y; Lan W; Schaeffel F
    Vision Res; 2015 Jan; 106():81-9. PubMed ID: 25449158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A double-blind, placebo-controlled study on the effects of lutein and zeaxanthin on photostress recovery, glare disability, and chromatic contrast.
    Hammond BR; Fletcher LM; Roos F; Wittwer J; Schalch W
    Invest Ophthalmol Vis Sci; 2014 Dec; 55(12):8583-9. PubMed ID: 25468896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal characteristics of melanopsin inputs to the human pupil light reflex.
    Joyce DS; Feigl B; Cao D; Zele AJ
    Vision Res; 2015 Feb; 107():58-66. PubMed ID: 25497360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration.
    Akuffo KO; Nolan JM; Peto T; Stack J; Leung I; Corcoran L; Beatty S
    Br J Ophthalmol; 2017 Feb; 101(2):190-197. PubMed ID: 27091854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources of variability in the clinical photostress test.
    Margrain TH; Thomson D
    Ophthalmic Physiol Opt; 2002 Jan; 22(1):61-7. PubMed ID: 11824648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-illumination pupil response in subjects without ocular disease.
    Kankipati L; Girkin CA; Gamlin PD
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2764-9. PubMed ID: 20007832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological evaluation of the macular cone adaptation: VEP after photostress. A review.
    Parisi V
    Doc Ophthalmol; 2001 May; 102(3):251-62. PubMed ID: 11556488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The simple perfection of quantum correlation in human vision.
    Bouman MA
    Prog Neurobiol; 2006 Jan; 78(1):38-60. PubMed ID: 16377059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pupil photostress test.
    Zabriskie NA; Kardon RH
    Ophthalmology; 1994 Jun; 101(6):1122-30. PubMed ID: 8008354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of Rod and Cone Influence to the Early and Late Dynamic of the Pupillary Light Response.
    Kostic C; Crippa SV; Martin C; Kardon RH; Biel M; Arsenijevic Y; Kawasaki A
    Invest Ophthalmol Vis Sci; 2016 May; 57(6):2501-8. PubMed ID: 27152964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin and Melanopsin Contributions to the Early Redilation Phase of the Post-Illumination Pupil Response (PIPR).
    Adhikari P; Feigl B; Zele AJ
    PLoS One; 2016; 11(8):e0161175. PubMed ID: 27548480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Flickering Light to Enhance Nonimage-Forming Visual Stimulation in Humans.
    Vartanian GV; Zhao X; Wong KY
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4680-8. PubMed ID: 26207303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of selective-wavelength block filters on pupillary light reflex under red and blue light stimuli.
    Ishikawa H; Onodera A; Asakawa K; Nakadomari S; Shimizu K
    Jpn J Ophthalmol; 2012 Mar; 56(2):181-6. PubMed ID: 22219036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Pupil and melanopsin photoreception].
    Ishikawa H
    Nippon Ganka Gakkai Zasshi; 2013 Mar; 117(3):246-68; discussion 269. PubMed ID: 23631256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between melanopsin gene polymorphism (I394T) and pupillary light reflex is dependent on light wavelength.
    Lee SI; Hida A; Tsujimura S; Morita T; Mishima K; Higuchi S
    J Physiol Anthropol; 2013 Oct; 32(1):16. PubMed ID: 24119231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.