BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30513193)

  • 1. Delivery of an Artificial Transcription Regulator dCas9-VPR by Extracellular Vesicles for Therapeutic Gene Activation.
    Lainšček D; Kadunc L; Keber MM; Bratkovič IH; Romih R; Jerala R
    ACS Synth Biol; 2018 Dec; 7(12):2715-2725. PubMed ID: 30513193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 Genome Editing vs. Over-Expression for Fluorescent Extracellular Vesicle-Labeling: A Quantitative Analysis.
    Strohmeier K; Hofmann M; Hauser F; Sivun D; Puthukodan S; Karner A; Sandner G; Le Renard PE; Jacak J; Mairhofer M
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects.
    Rahman MM; Tollefsbol TO
    Methods; 2021 Mar; 187():77-91. PubMed ID: 32315755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular vesicles as a potential delivery platform for CRISPR-Cas based therapy in epithelial ovarian cancer.
    Godbole N; Quinn A; Carrion F; Pelosi E; Salomon C
    Semin Cancer Biol; 2023 Nov; 96():64-81. PubMed ID: 37820858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery.
    Luo N; Li J; Chen Y; Xu Y; Wei Y; Lu J; Dong R
    Drug Deliv; 2021 Dec; 28(1):10-18. PubMed ID: 33336604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Cas9 extracellular vesicles as a novel gene editing tool.
    Osteikoetxea X; Silva A; Lázaro-Ibáñez E; Salmond N; Shatnyeva O; Stein J; Schick J; Wren S; Lindgren J; Firth M; Madsen A; Mayr LM; Overman R; Davies R; Dekker N
    J Extracell Vesicles; 2022 May; 11(5):e12225. PubMed ID: 35585651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Editing by Extracellular Vesicles.
    Kostyushev D; Kostyusheva A; Brezgin S; Smirnov V; Volchkova E; Lukashev A; Chulanov V
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33028045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide.
    Wang HX; Song Z; Lao YH; Xu X; Gong J; Cheng D; Chakraborty S; Park JS; Li M; Huang D; Yin L; Cheng J; Leong KW
    Proc Natl Acad Sci U S A; 2018 May; 115(19):4903-4908. PubMed ID: 29686087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice.
    Li L; Song L; Liu X; Yang X; Li X; He T; Wang N; Yang S; Yu C; Yin T; Wen Y; He Z; Wei X; Su W; Wu Q; Yao S; Gong C; Wei Y
    ACS Nano; 2017 Jan; 11(1):95-111. PubMed ID: 28114767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Live imaging and tracking of genome regions in CRISPR/dCas9 knock-in mice.
    Duan J; Lu G; Hong Y; Hu Q; Mai X; Guo J; Si X; Wang F; Zhang Y
    Genome Biol; 2018 Nov; 19(1):192. PubMed ID: 30409154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Therapeutics for Extracellular Vesicles: Delivering CRISPR for Cancer Treatment.
    Yan B; Liang Y
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current and prospective strategies for advancing the targeted delivery of CRISPR/Cas system via extracellular vesicles.
    Huang X; Li A; Xu P; Yu Y; Li S; Hu L; Feng S
    J Nanobiotechnology; 2023 Jun; 21(1):184. PubMed ID: 37291577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible CRISPR genome-editing tool: classifications and future trends.
    Dai X; Chen X; Fang Q; Li J; Bai Z
    Crit Rev Biotechnol; 2018 Jun; 38(4):573-586. PubMed ID: 28936886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reporter mice for isolating and auditing cell type-specific extracellular vesicles in vivo.
    McCann JV; Bischoff SR; Zhang Y; Cowley DO; Sanchez-Gonzalez V; Daaboul GD; Dudley AC
    Genesis; 2020 Jul; 58(7):e23369. PubMed ID: 32543746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy.
    Zhuang J; Tan J; Wu C; Zhang J; Liu T; Fan C; Li J; Zhang Y
    Nucleic Acids Res; 2020 Sep; 48(16):8870-8882. PubMed ID: 32810272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-assisted transcription activation by phase-separation proteins.
    Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z
    Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.
    Hung SS; Chrysostomou V; Li F; Lim JK; Wang JH; Powell JE; Tu L; Daniszewski M; Lo C; Wong RC; Crowston JG; Pébay A; King AE; Bui BV; Liu GS; Hewitt AW
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3470-6. PubMed ID: 27367513
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Ye Y; Shi Q; Yang T; Xie F; Zhang X; Xu B; Fang J; Chen J; Zhang Y; Li J
    Technol Cancer Res Treat; 2022; 21():15330338221085370. PubMed ID: 35315725
    [No Abstract]   [Full Text] [Related]  

  • 20. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.