These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30513586)

  • 1. Process Simulation and Cost Evaluation of Carbon Membranes for CO₂ Removal from High-Pressure Natural Gas.
    Chu Y; He X
    Membranes (Basel); 2018 Nov; 8(4):. PubMed ID: 30513586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and Optimization of the Acid Gas Absorption Process by an Aqueous Diethanolamine Solution in a Natural Gas Sweetening Unit.
    Darani NS; Behbahani RM; Shahebrahimi Y; Asadi A; Mohammadi AH
    ACS Omega; 2021 May; 6(18):12072-12080. PubMed ID: 34056361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superglassy Polymers to Treat Natural Gas by Hybrid Membrane/Amine Processes: Can Fillers Help?
    Ameen AW; Budd PM; Gorgojo P
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33322061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. highly selective amino acid salt solutions as absorption liquid for CO(2) capture in gas-liquid membrane contactors.
    Simons K; Nijmeijer K; Mengers H; Brilman W; Wessling M
    ChemSusChem; 2010 Aug; 3(8):939-47. PubMed ID: 20623726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review.
    Imtiaz A; Othman MHD; Jilani A; Khan IU; Kamaludin R; Iqbal J; Al-Sehemi AG
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Technique Integrating Hydrate-Based Gas Separation and Chemical Absorption for the Sweetening of Natural Gas with High H
    Liu G; Zhu L; Cao W; Liu H; He Y
    ACS Omega; 2021 Oct; 6(40):26180-26190. PubMed ID: 34660977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed Investigation of Separation Performance of a MMM for Removal of Higher Hydrocarbons under Varying Operating Conditions.
    Mushardt H; Müller M; Shishatskiy S; Wind J; Brinkmann T
    Membranes (Basel); 2016 Feb; 6(1):. PubMed ID: 26927194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free" Ionic Liquid Content: Platform Membrane Materials for CO2/Light Gas Separations.
    Cowan MG; Gin DL; Noble RD
    Acc Chem Res; 2016 Apr; 49(4):724-32. PubMed ID: 27046045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membranes for environmentally friendly energy processes.
    He X; Hägg MB
    Membranes (Basel); 2012 Oct; 2(4):706-26. PubMed ID: 24958426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide.
    Scholes CA; Chen GQ; Lu HT; Kentish SE
    Membranes (Basel); 2015 Dec; 6(1):. PubMed ID: 26703745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Economic leverage affords post-combustion capture of 43% of carbon emissions: Supersonic separators for methanol hydrate inhibitor recovery from raw natural gas and CO
    Teixeira AM; Arinelli LO; de Medeiros JL; Araújo OQF
    J Environ Manage; 2019 Apr; 236():534-550. PubMed ID: 30771673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Thin-Film Composite Membranes from Aromatic Cardo-Type Co-Polyimide for Mixed and Sour Gas Separations from Natural Gas.
    Yahaya GO; Choi SH; Sultan MMB; Hayek A
    Glob Chall; 2020 Jul; 4(7):1900107. PubMed ID: 32642076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Kadirkhan F; Sean GP; Ismail AF; Wan Mustapa WNF; Halim MHM; Kian SW; Yean YS
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy, exergy, economic, environment, exergo-environment based assessment of amine-based hybrid solvents for natural gas sweetening.
    Ellaf A; Ali Ammar Taqvi S; Zaeem D; Siddiqui FUH; Kazmi B; Idris A; Alshgari RA; Mushab MSS
    Chemosphere; 2023 Feb; 313():137426. PubMed ID: 36470356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability of PolyActive™ Thin Film Composite Membranes for CO₂ Separation from C₂H₄ Containing Multi-Component Gas Mixtures at Pressures up to 30 Bar.
    Schuldt K; Pohlmann J; Shishatskiy S; Brinkmann T
    Membranes (Basel); 2018 Jun; 8(2):. PubMed ID: 29874781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Techno-Economic Optimization of Multistage Membrane Processes with Innovative Hollow Fiber Modules for the Production of High-Purity CO
    Abejón R; Casado-Coterillo C; Garea A
    Ind Eng Chem Res; 2022 Jun; 61(23):8149-8165. PubMed ID: 35726248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review of Membranes for Helium Separation and Purification.
    Scholes CA; Ghosh UK
    Membranes (Basel); 2017 Feb; 7(1):. PubMed ID: 28218644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane.
    Ha KS; Bae JW; Woo KJ; Jun KW
    Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.