These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30513605)

  • 41. Predicting Shear Transformation Events in Metallic Glasses.
    Xu B; Falk ML; Li JF; Kong LT
    Phys Rev Lett; 2018 Mar; 120(12):125503. PubMed ID: 29694058
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A critical appraisal of the nanoindentation creep 'nose' effect in Ni thin films.
    Ma Z; Zhou Y; Long S; Pan Y
    J Nanosci Nanotechnol; 2012 Feb; 12(2):955-8. PubMed ID: 22629878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A nanoscale study of the negative strain rate dependency of the strength of metallic glasses by molecular dynamics simulations.
    Yang L; Fan J; Vu-Bac N; Rabczuk T
    Phys Chem Chem Phys; 2018 Nov; 20(41):26552-26557. PubMed ID: 30306983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glass dynamics at high strain rates.
    Langer JS; Egami T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011502. PubMed ID: 23005420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-Newtonian Flow to the Theoretical Strength of Glasses via Impact Nanoindentation at Room Temperature.
    Zehnder C; Peltzer JN; Gibson JSK; Möncke D; Korte-Kerzel S
    Sci Rep; 2017 Dec; 7(1):17618. PubMed ID: 29247213
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Origin of large plasticity and multiscale effects in iron-based metallic glasses.
    Sarac B; Ivanov YP; Chuvilin A; Schöberl T; Stoica M; Zhang Z; Eckert J
    Nat Commun; 2018 Apr; 9(1):1333. PubMed ID: 29626189
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomistic Origin of Rate-Dependent Serrated Plastic Flow in Metallic Glasses.
    Jiang SY; Jiang MQ; Dai LH; Yao YG
    Nanoscale Res Lett; 2008 Dec; 3(12):524-9. PubMed ID: 20596444
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rate-dependent shear bands in a shear-transformation-zone model of amorphous solids.
    Manning ML; Daub EG; Langer JS; Carlson JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016110. PubMed ID: 19257110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fracture in glassy polymers: a molecular modeling perspective.
    Rottler J
    J Phys Condens Matter; 2009 Nov; 21(46):463101. PubMed ID: 21715863
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Shear transformation zone analysis of anelastic relaxation of a metallic glass reveals distinct properties of α and β relaxations.
    Lei TJ; Rangel DaCosta L; Liu M; Wang WH; Sun YH; Greer AL; Atzmon M
    Phys Rev E; 2019 Sep; 100(3-1):033001. PubMed ID: 31639957
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Steady-state, effective-temperature dynamics in a glassy material.
    Langer JS; Manning ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056107. PubMed ID: 18233718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Yielding of glass under shear: A directed percolation transition precedes shear-band formation.
    Shrivastav GP; Chaudhuri P; Horbach J
    Phys Rev E; 2016 Oct; 94(4-1):042605. PubMed ID: 27841596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stress-temperature scaling for steady-state flow in metallic glasses.
    Guan P; Chen M; Egami T
    Phys Rev Lett; 2010 May; 104(20):205701. PubMed ID: 20867037
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pop-In Phenomenon as a Fundamental Plasticity Probed by Nanoindentation Technique.
    Ohmura T; Wakeda M
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33918894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct in situ observation of metallic glass deformation by real-time nano-scale indentation.
    Gu L; Xu L; Zhang Q; Pan D; Chen N; Louzguine-Luzgin DV; Yao KF; Wang W; Ikuhara Y
    Sci Rep; 2015 Mar; 5():9122. PubMed ID: 25773051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical properties of multilayered films using different nanoindenters.
    Fang TH; Wang TH; Wu JH
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4568-72. PubMed ID: 21128458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Origin of embrittlement in metallic glasses.
    Garrett GR; Demetriou MD; Launey ME; Johnson WL
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10257-62. PubMed ID: 27573817
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micro-deformation evolutions of the constituent phases in duplex stainless steel during cyclic nanoindentation.
    Cui YY; Jia YF; Xuan FZ
    Sci Rep; 2018 Apr; 8(1):6199. PubMed ID: 29670162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Boundary lubrication with a glassy interface.
    Lemaître A; Carlson J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061611. PubMed ID: 15244589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantifying the Size-Dependent Shear Banding Behavior in High-Entropy Alloy-Based Nanolayered Glass.
    Dai K; Zhang C; Lu W; Li J
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.