BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30513640)

  • 1. Untargeted Metabolic Profiling Cell-Based Approach of Pulmonary Artery Smooth Muscle Cells in Response to High Glucose and the Effect of the Antioxidant Vitamins D and E.
    Alamri A; Burzangi AS; Coats P; Watson DG
    Metabolites; 2018 Nov; 8(4):. PubMed ID: 30513640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Celastramycin as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension.
    Kurosawa R; Satoh K; Kikuchi N; Kikuchi H; Saigusa D; Al-Mamun ME; Siddique MAH; Omura J; Satoh T; Sunamura S; Nogi M; Numano K; Miyata S; Uruno A; Kano K; Matsumoto Y; Doi T; Aoki J; Oshima Y; Yamamoto M; Shimokawa H
    Circ Res; 2019 Jul; 125(3):309-327. PubMed ID: 31195886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension.
    Dumas SJ; Bru-Mercier G; Courboulin A; Quatredeniers M; Rücker-Martin C; Antigny F; Nakhleh MK; Ranchoux B; Gouadon E; Vinhas MC; Vocelle M; Raymond N; Dorfmüller P; Fadel E; Perros F; Humbert M; Cohen-Kaminsky S
    Circulation; 2018 May; 137(22):2371-2389. PubMed ID: 29444988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma metabolomics in adults with cystic fibrosis during a pulmonary exacerbation: A pilot randomized study of high-dose vitamin D
    Alvarez JA; Chong EY; Walker DI; Chandler JD; Michalski ES; Grossmann RE; Uppal K; Li S; Frediani JK; Tirouvanziam R; Tran VT; Tangpricha V; Jones DP; Ziegler TR
    Metabolism; 2017 May; 70():31-41. PubMed ID: 28403943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic reprogramming and redox adaptation in sorafenib-resistant leukemia cells: detected by untargeted metabolomics and stable isotope tracing analysis.
    You X; Jiang W; Lu W; Zhang H; Yu T; Tian J; Wen S; Garcia-Manero G; Huang P; Hu Y
    Cancer Commun (Lond); 2019 Apr; 39(1):17. PubMed ID: 30947742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stox1 induced the proliferation and cell cycle arrest in pulmonary artery smooth muscle cells via AKT signaling pathway.
    Xu Y; Sun Z; Wang Q; Wang T; Liu Y; Yu F
    Vascul Pharmacol; 2019 Sep; 120():106568. PubMed ID: 31207359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long Non-Coding RNA MEG3 Downregulation Triggers Human Pulmonary Artery Smooth Muscle Cell Proliferation and Migration via the p53 Signaling Pathway.
    Sun Z; Nie X; Sun S; Dong S; Yuan C; Li Y; Xiao B; Jie D; Liu Y
    Cell Physiol Biochem; 2017; 42(6):2569-2581. PubMed ID: 28848087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carvedilol inhibits proliferation of cultured pulmonary artery smooth muscle cells of patients with idiopathic pulmonary arterial hypertension.
    Fujio H; Nakamura K; Matsubara H; Kusano KF; Miyaji K; Nagase S; Ikeda T; Ogawa A; Ohta-Ogo K; Miura D; Miura A; Miyazaki M; Date H; Ohe T
    J Cardiovasc Pharmacol; 2006 Feb; 47(2):250-5. PubMed ID: 16495763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nogo-B Receptor Modulates Pulmonary Artery Smooth Muscle Cell Function in Developing Lungs.
    Tadokoro KS; Rana U; Jing X; Konduri GG; Miao QR; Teng RJ
    Am J Respir Cell Mol Biol; 2016 Jun; 54(6):892-900. PubMed ID: 26652754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycation, oxidative stress, and scavenger activity: glucose metabolism and radical scavenger dysfunction in endothelial cells.
    Kashiwagi A; Asahina T; Nishio Y; Ikebuchi M; Tanaka Y; Kikkawa R; Shigeta Y
    Diabetes; 1996 Jul; 45 Suppl 3():S84-6. PubMed ID: 8674901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1.
    Balteau M; Tajeddine N; de Meester C; Ginion A; Des Rosiers C; Brady NR; Sommereyns C; Horman S; Vanoverschelde JL; Gailly P; Hue L; Bertrand L; Beauloye C
    Cardiovasc Res; 2011 Nov; 92(2):237-46. PubMed ID: 21859816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. O-linked β-N-acetylglucosamine transferase directs cell proliferation in idiopathic pulmonary arterial hypertension.
    Barnes JW; Tian L; Heresi GA; Farver CF; Asosingh K; Comhair SA; Aulak KS; Dweik RA
    Circulation; 2015 Apr; 131(14):1260-8. PubMed ID: 25663381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension: Possible Novel Therapeutic Target.
    Kikuchi N; Satoh K; Kurosawa R; Yaoita N; Elias-Al-Mamun M; Siddique MAH; Omura J; Satoh T; Nogi M; Sunamura S; Miyata S; Saito Y; Hoshikawa Y; Okada Y; Shimokawa H
    Circulation; 2018 Aug; 138(6):600-623. PubMed ID: 29636330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabonomics Profiling Reveals Biochemical Pathways Associated with Pulmonary Arterial Hypertension in Broiler Chickens.
    Shao FJ; Ying YT; Tan X; Zhang QY; Liao WT
    J Proteome Res; 2018 Oct; 17(10):3445-3453. PubMed ID: 30178671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Let-7a-transfected mesenchymal stem cells ameliorate monocrotaline-induced pulmonary hypertension by suppressing pulmonary artery smooth muscle cell growth through STAT3-BMPR2 signaling.
    Cheng G; Wang X; Li Y; He L
    Stem Cell Res Ther; 2017 Feb; 8(1):34. PubMed ID: 28187784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. alpha1A-adrenoceptor is involved in norepinephrine-induced proliferation of pulmonary artery smooth muscle cells via CaMKII signaling.
    Luo Q; Wang X; Liu R; Qiao H; Wang P; Jiang C; Zhang Q; Cao Y; Yu H; Qu L
    J Cell Biochem; 2019 Jun; 120(6):9345-9355. PubMed ID: 30520144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentose phosphate pathway, glutathione-dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: effects of stobadine and vitamin E.
    Ulusu NN; Sahilli M; Avci A; Canbolat O; Ozansoy G; Ari N; Bali M; Stefek M; Stolc S; Gajdosik A; Karasu C
    Neurochem Res; 2003 Jun; 28(6):815-23. PubMed ID: 12718433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipids and ketones dominate metabolism at the expense of glucose control in pulmonary arterial hypertension: a hyperglycaemic clamp and metabolomics study.
    Mey JT; Hari A; Axelrod CL; Fealy CE; Erickson ML; Kirwan JP; Dweik RA; Heresi GA
    Eur Respir J; 2020 Apr; 55(4):. PubMed ID: 32108049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Emetine as a Therapeutic Agent for Pulmonary Arterial Hypertension: Novel Effects of an Old Drug.
    Siddique MAH; Satoh K; Kurosawa R; Kikuchi N; Elias-Al-Mamun M; Omura J; Satoh T; Nogi M; Sunamura S; Miyata S; Ueda H; Tokuyama H; Shimokawa H
    Arterioscler Thromb Vasc Biol; 2019 Nov; 39(11):2367-2385. PubMed ID: 31533472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine-rich 61 (Cyr61) upregulated in pulmonary arterial hypertension promotes the proliferation of pulmonary artery smooth muscle cells.
    Gao L; Fan Y; Hao Y; Yuan P; Liu D; Jing Z; Zhang Z
    Int J Med Sci; 2017; 14(9):820-828. PubMed ID: 28824319
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.