These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30513814)

  • 41. Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment.
    Damodar RA; You SJ; Chiou GW
    J Hazard Mater; 2012 Feb; 203-204():348-56. PubMed ID: 22226722
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Drawing on Membrane Photocatalysis for Fouling Mitigation.
    Zhang H; Wan Y; Luo J; Darling SB
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):14844-14865. PubMed ID: 33769034
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure.
    Khataee AR; Pons MN; Zahraa O
    J Hazard Mater; 2009 Aug; 168(1):451-7. PubMed ID: 19278779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modification of forward osmosis membrane with naturally-available humic acid: Towards simultaneously improved filtration performance and antifouling properties.
    Guan YF; Huang BC; Wang YJ; Gong B; Lu X; Yu HQ
    Environ Int; 2019 Oct; 131():105045. PubMed ID: 31352263
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photodecomposition of humic acid and natural organic matter in swamp water using a TiO(2)-coated ceramic foam filter: potential for the formation of disinfection byproducts.
    Mori M; Sugita T; Mase A; Funatogawa T; Kikuchi M; Aizawa K; Kato S; Saito Y; Ito T; Itabashi H
    Chemosphere; 2013 Jan; 90(4):1359-65. PubMed ID: 22921646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insight into Fe(II)/UV/chlorine pretreatment for reducing ultrafiltration (UF) membrane fouling: Effects of different natural organic fractions and comparison with coagulation.
    Xing J; Liang H; Chuah CJ; Bao Y; Luo X; Wang T; Wang J; Li G; Snyder SA
    Water Res; 2019 Dec; 167():115112. PubMed ID: 31585385
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using UV-vis absorbance spectral parameters to characterize the fouling propensity of humic substances during ultrafiltration.
    Zhou M; Meng F
    Water Res; 2015 Dec; 87():311-9. PubMed ID: 26433779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrated oxidation membrane filtration process - NOM rejection and membrane fouling.
    Winter J; Uhl W; Bérubé PR
    Water Res; 2016 Nov; 104():418-424. PubMed ID: 27579870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal of color substances using photocatalytic oxidation for membrane filtration processes.
    Tay JH; Chen D; Sun DD
    Water Sci Technol; 2001; 43(10):319-25. PubMed ID: 11436797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Opposite impacts of K
    Li B; He X; Wang P; Liu Q; Qiu W; Ma J
    Water Res; 2020 Sep; 183():116006. PubMed ID: 32585389
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transition in fouling mechanism in microfiltration of a surface water.
    Yamamura H; Chae S; Kimura K; Watanabe Y
    Water Res; 2007 Sep; 41(17):3812-22. PubMed ID: 17631376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes.
    Damodar RA; You SJ; Chou HH
    J Hazard Mater; 2009 Dec; 172(2-3):1321-8. PubMed ID: 19729240
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fouling control of a membrane coupled photocatalytic process treating greywater.
    Pidou M; Parsons SA; Raymond G; Jeffrey P; Stephenson T; Jefferson B
    Water Res; 2009 Sep; 43(16):3932-9. PubMed ID: 19539972
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impact of operating conditions on the removal of endocrine disrupting chemicals by membrane photocatalytic reactor.
    López Fernández R; Coleman HM; Le-Clech P
    Environ Technol; 2014 Aug; 35(13-16):2068-74. PubMed ID: 24956801
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of pH and polypropylene beads in hybrid water treatment process of alumina ceramic microfiltration and PP beads with air back-flushing and UV irradiation.
    Park JY; Song S
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1142-1151. PubMed ID: 28685338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment.
    Nerger BA; Peiris RH; Moresoli C
    Chemosphere; 2015 Oct; 136():140-4. PubMed ID: 25981799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of dissolved organic matter and membrane fouling in coagulation-ultrafiltration process treating micro-polluted surface water.
    Bu F; Gao B; Yue Q; Shen X; Wang W
    J Environ Sci (China); 2019 Jan; 75():318-324. PubMed ID: 30473297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reactive Photo-Fenton ceramic membranes: Synthesis, characterization and antifouling performance.
    Sun S; Yao H; Fu W; Hua L; Zhang G; Zhang W
    Water Res; 2018 Nov; 144():690-698. PubMed ID: 30096694
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization and mitigation of the fouling of flat-sheet ceramic membranes for direct filtration of the coagulated domestic wastewater.
    Zhao YX; Li P; Li RH; Li XY
    J Hazard Mater; 2020 Mar; 385():121557. PubMed ID: 31735469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of peroxymonosulfate oxidation activated by powdered activated carbon for mitigating ultrafiltration membrane fouling caused by different natural organic matter fractions.
    Cheng X; Li P; Zhou W; Wu D; Luo C; Liu W; Ren Z; Liang H
    Chemosphere; 2019 Apr; 221():812-823. PubMed ID: 30684779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.