BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30513825)

  • 1. Human Miro Proteins Act as NTP Hydrolases through a Novel, Non-Canonical Catalytic Mechanism.
    Peters DT; Kay L; Eswaran J; Lakey JH; Soundararajan M
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30513825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural coupling of the EF hand and C-terminal GTPase domains in the mitochondrial protein Miro.
    Klosowiak JL; Focia PJ; Chakravarthy S; Landahl EC; Freymann DM; Rice SE
    EMBO Rep; 2013 Nov; 14(11):968-74. PubMed ID: 24071720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics and bioinformatics analyses identify novel cellular roles outside mitochondrial function for human miro GTPases.
    Kay LJ; Sangal V; Black GW; Soundararajan M
    Mol Cell Biochem; 2019 Jan; 451(1-2):21-35. PubMed ID: 29943371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis.
    Fransson A; Ruusala A; Aspenström P
    J Biol Chem; 2003 Feb; 278(8):6495-502. PubMed ID: 12482879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking.
    Fransson S; Ruusala A; Aspenström P
    Biochem Biophys Res Commun; 2006 Jun; 344(2):500-10. PubMed ID: 16630562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function analysis of the yeast mitochondrial Rho GTPase, Gem1p: implications for mitochondrial inheritance.
    Koshiba T; Holman HA; Kubara K; Yasukawa K; Kawabata S; Okamoto K; MacFarlane J; Shaw JM
    J Biol Chem; 2011 Jan; 286(1):354-62. PubMed ID: 21036903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atypical Switch-I Arginine plays a catalytic role in GTP hydrolysis by Rab21 from Entamoeba histolytica.
    Kotyada C; Chandra M; Tripathi A; Narooka AR; Datta S; Verma A
    Biochem Biophys Res Commun; 2018 Nov; 506(3):660-667. PubMed ID: 30454703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between the mitochondrial adaptor MIRO and the motor adaptor TRAK.
    Baltrusaitis EE; Ravitch EE; Fenton AR; Perez TA; Holzbaur ELF; Dominguez R
    J Biol Chem; 2023 Dec; 299(12):105441. PubMed ID: 37949220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miro sculpts mitochondrial dynamics in neuronal health and disease.
    Devine MJ; Birsa N; Kittler JT
    Neurobiol Dis; 2016 Jun; 90():27-34. PubMed ID: 26707701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insight into human Miro1/2 domain organization based on the structure of its N-terminal GTPase.
    Smith KP; Focia PJ; Chakravarthy S; Landahl EC; Klosowiak JL; Rice SE; Freymann DM
    J Struct Biol; 2020 Dec; 212(3):107656. PubMed ID: 33132189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miro: A molecular switch at the center of mitochondrial regulation.
    Eberhardt EL; Ludlam AV; Tan Z; Cianfrocco MA
    Protein Sci; 2020 Jun; 29(6):1269-1284. PubMed ID: 32056317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism.
    Mishra AK; Del Campo CM; Collins RE; Roy CR; Lambright DG
    J Biol Chem; 2013 Aug; 288(33):24000-11. PubMed ID: 23821544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into Parkin substrate lysine targeting from minimal Miro substrates.
    Klosowiak JL; Park S; Smith KP; French ME; Focia PJ; Freymann DM; Rice SE
    Sci Rep; 2016 Sep; 6():33019. PubMed ID: 27605430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
    Pan X; Eathiraj S; Munson M; Lambright DG
    Nature; 2006 Jul; 442(7100):303-6. PubMed ID: 16855591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum.
    Vlahou G; Eliáš M; von Kleist-Retzow JC; Wiesner RJ; Rivero F
    Eur J Cell Biol; 2011 Apr; 90(4):342-55. PubMed ID: 21131095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Miro GTPases: Implications in the Treatment of Neurodegenerative Disorders.
    Kay L; Pienaar IS; Cooray R; Black G; Soundararajan M
    Mol Neurobiol; 2018 Sep; 55(9):7352-7365. PubMed ID: 29411264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology.
    Tang BL
    Cells; 2015 Dec; 5(1):. PubMed ID: 26729171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miro-dependent mitochondrial pool of CENP-F and its farnesylated C-terminal domain are dispensable for normal development in mice.
    Peterka M; Kornmann B
    PLoS Genet; 2019 Mar; 15(3):e1008050. PubMed ID: 30856164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins.
    Birsa N; Norkett R; Higgs N; Lopez-Domenech G; Kittler JT
    Biochem Soc Trans; 2013 Dec; 41(6):1525-31. PubMed ID: 24256248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase.
    Saotome M; Safiulina D; Szabadkai G; Das S; Fransson A; Aspenstrom P; Rizzuto R; Hajnóczky G
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):20728-33. PubMed ID: 19098100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.