These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 30513855)

  • 1. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental risks and mechanical evaluation of recycling red mud in bricks.
    Arroyo F; Luna-Galiano Y; Leiva C; Vilches LF; Fernández-Pereira C
    Environ Res; 2020 Jul; 186():109537. PubMed ID: 32315825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Management of spent shea waste: An instrumental characterization and valorization in clay bricks construction.
    Adazabra AN; Viruthagiri G; Shanmugam N
    Waste Manag; 2017 Jun; 64():286-304. PubMed ID: 28336335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Gypsum Waste Utilization on Properties and Leachability of Fired Clay Brick.
    Hamid NJA; Kadir AA; Hashar NNH; Pietrusiewicz P; Nabiałek M; Wnuk I; Gucwa M; Palutkiewicz P; Hashim AA; Sarani NA; Nio AA; Noor NM; Jez B
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34074057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
    Juel MAI; Mizan A; Ahmed T
    Waste Manag; 2017 Feb; 60():259-269. PubMed ID: 28081994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of eco-friendly porous fired clay bricks using pore-forming agents: a review.
    Bories C; Borredon ME; Vedrenne E; Vilarem G
    J Environ Manage; 2014 Oct; 143():186-96. PubMed ID: 24908498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of sugarcane bagasse ash waste in the production of clay bricks.
    Faria KC; Gurgel RF; Holanda JN
    J Environ Manage; 2012 Jun; 101():7-12. PubMed ID: 22387325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leachate analysis of green and fired-clay bricks incorporated with biosolids.
    Ukwatta A; Mohajerani A
    Waste Manag; 2017 Aug; 66():134-144. PubMed ID: 28461141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reuse of walnut shell waste in the development of fired ceramic bricks.
    Barnabas AA; Balogun OA; Akinwande AA; Ogbodo JF; Ademati AO; Dongo EI; Romanovski V
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11823-11837. PubMed ID: 36098915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared analysis of clay bricks incorporated with spent shea waste from the shea butter industry.
    Adazabra AN; Viruthagiri G; Shanmugam N
    J Environ Manage; 2017 Apr; 191():66-74. PubMed ID: 28088059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technological behaviour and recycling potential of spent foundry sands in clay bricks.
    Alonso-Santurde R; Andrés A; Viguri JR; Raimondo M; Guarini G; Zanelli C; Dondi M
    J Environ Manage; 2011 Mar; 92(3):994-1002. PubMed ID: 21129840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks.
    Pérez-Villarejo L; Eliche-Quesada D; Iglesias-Godino FJ; Martínez-García C; Corpas-Iglesias FA
    J Environ Manage; 2012 Mar; 95 Suppl():S349-54. PubMed ID: 21071132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of open pit burned household waste ash--a feasibility study in Dhaka.
    Haque MO; Sharif A
    Waste Manag Res; 2014 May; 32(5):397-405. PubMed ID: 24646568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.