These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 30513880)
1. Bonding Strength of a Glass Microfluidic Device Fabricated by Femtosecond Laser Micromachining and Direct Welding. Kim S; Kim J; Joung YH; Choi J; Koo C Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30513880 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of an Implantable Blood Pressure Sensor Packaged by Ultrafast Laser Microwelding. Kim S; Park J; So S; Ahn S; Choi J; Koo C; Joung YH Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 30991708 [TBL] [Abstract][Full Text] [Related]
3. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238 [TBL] [Abstract][Full Text] [Related]
4. Experimental Analysis of Laser Micromachining of Microchannels in Common Microfluidic Substrates. Konari PR; Clayton YD; Vaughan MB; Khandaker M; Hossan MR Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33525394 [TBL] [Abstract][Full Text] [Related]
5. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. Kim M; Hwang DJ; Jeon H; Hiromatsu K; Grigoropoulos CP Lab Chip; 2009 Jan; 9(2):311-8. PubMed ID: 19107290 [TBL] [Abstract][Full Text] [Related]
6. Direct welding of glass and metal by 1 kHz femtosecond laser pulses. Zhang G; Cheng G Appl Opt; 2015 Oct; 54(30):8957-61. PubMed ID: 26560385 [TBL] [Abstract][Full Text] [Related]
7. A 3D Miniaturized Glass Magnetic-Active Centrifugal Micropump Fabricated by SLE Process and Laser Welding. Kim J; Kim S; Choi J; Koo C Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014253 [TBL] [Abstract][Full Text] [Related]
8. A Microfluidic Mixer of High Throughput Fabricated in Glass Using Femtosecond Laser Micromachining Combined with Glass Bonding. Qi J; Li W; Chu W; Yu J; Wu M; Liang Y; Yin D; Wang P; Wang Z; Wang M; Cheng Y Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093086 [TBL] [Abstract][Full Text] [Related]
9. Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates. Wlodarczyk KL; Carter RM; Jahanbakhsh A; Lopes AA; Mackenzie MD; Maier RRJ; Hand DP; Maroto-Valer MM Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424342 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and characterization of microstructures with optical quality surfaces in fused silica glass using femtosecond laser pulses and chemical etching. Sikorski Y; Rablau C; Dugan M; Said AA; Bado P; Beholz LG Appl Opt; 2006 Oct; 45(28):7519-23. PubMed ID: 16983441 [TBL] [Abstract][Full Text] [Related]
11. Polarization-independent microchannel in a high-speed-scan femtosecond laser-assisted etching of fused silica. Yao Q; Yin W; Yao H; Shi H; Su Z; Zeng X; Shi X; Zhao W; Dai Y Appl Opt; 2023 Jan; 62(2):291-297. PubMed ID: 36630227 [TBL] [Abstract][Full Text] [Related]
12. Direct fabrication of homogeneous microfluidic channels embedded in fused silica using a femtosecond laser. He F; Cheng Y; Xu Z; Liao Y; Xu J; Sun H; Wang C; Zhou Z; Sugioka K; Midorikawa K; Xu Y; Chen X Opt Lett; 2010 Feb; 35(3):282-4. PubMed ID: 20125695 [TBL] [Abstract][Full Text] [Related]
13. Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching. Vishnubhatla KC; Bellini N; Ramponi R; Cerullo G; Osellame R Opt Express; 2009 May; 17(10):8685-95. PubMed ID: 19434202 [TBL] [Abstract][Full Text] [Related]
14. High Repetition Rate UV versus VIS Picosecond Laser Fabrication of 3D Microfluidic Channels Embedded in Photosensitive Glass. Jipa F; Iosub S; Calin B; Axente E; Sima F; Sugioka K Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30065197 [TBL] [Abstract][Full Text] [Related]
15. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Wlodarczyk KL; Hand DP; Maroto-Valer MM Sci Rep; 2019 Dec; 9(1):20215. PubMed ID: 31882878 [TBL] [Abstract][Full Text] [Related]
16. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device. Kecili S; Tekin HC Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724 [TBL] [Abstract][Full Text] [Related]
17. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing. Xu J; Wu D; Hanada Y; Chen C; Wu S; Cheng Y; Sugioka K; Midorikawa K Lab Chip; 2013 Dec; 13(23):4608-16. PubMed ID: 24104603 [TBL] [Abstract][Full Text] [Related]
18. Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm. Tamaki T; Watanabe W; Itoh K Opt Express; 2006 Oct; 14(22):10460-8. PubMed ID: 19529445 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic Channels Fabrication Based on Underwater Superpolymphobic Microgrooves Produced by Femtosecond Laser Direct Writing. Yong J; Zhan Z; Singh SC; Chen F; Guo C ACS Appl Polym Mater; 2019; 1(11):2819-2825. PubMed ID: 33283193 [TBL] [Abstract][Full Text] [Related]
20. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry. Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]