These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 30513950)

  • 61. Superficial ultrasound shear wave speed measurements in soft and hard elasticity phantoms: repeatability and reproducibility using two ultrasound systems.
    Dillman JR; Chen S; Davenport MS; Zhao H; Urban MW; Song P; Watcharotone K; Carson PL
    Pediatr Radiol; 2015 Mar; 45(3):376-85. PubMed ID: 25249389
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biomechanical Strengthening of the Human Cornea Induced by Nanoplatform-Based Transepithelial Riboflavin/UV-A Corneal Cross-Linking.
    Labate C; Lombardo M; Lombardo G; De Santo MP
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):179-184. PubMed ID: 28114577
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A regularization-free Young's modulus reconstruction algorithm for ultrasound elasticity imaging.
    Pan X; Gao J; Shao J; Luo J; Bai J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1132-5. PubMed ID: 24109892
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The variance of quantitative estimates in shear wave imaging: theory and experiments.
    Deffieux T; Gennisson JL; Larrat B; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2390-410. PubMed ID: 23192803
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Towards quantitative quasi-static ultrasound elastography using a reference layer for liver imaging application: A preliminary assessment.
    Selladurai S; Thittai AK
    Ultrasonics; 2019 Mar; 93():7-17. PubMed ID: 30384008
    [TBL] [Abstract][Full Text] [Related]  

  • 66. On the effects of reflected waves in transient shear wave elastography.
    Deffieux T; Gennisson JL; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2032-5. PubMed ID: 21989866
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound.
    Yeh CL; Chen BR; Tseng LY; Jao P; Su TH; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1295-307. PubMed ID: 26168176
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ultrasonic Shear Wave Elasticity Imaging Sequencing and Data Processing Using a Verasonics Research Scanner.
    Deng Y; Rouze NC; Palmeri ML; Nightingale KR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):164-176. PubMed ID: 28092508
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dual-Phase Transmit Focusing for Multiangle Compound Shear-Wave Elasticity Imaging.
    Yoon H; Aglyamov SR; Emelianov SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1439-1449. PubMed ID: 28708552
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nonlinear elasticity imaging: theory and phantom study.
    Erkamp RQ; Emelianov SY; Skovoroda AR; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):532-9. PubMed ID: 15217231
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A new shear wave imaging system for ultrasound elastography.
    Qiu W; Wang C; Xiao Y; Qian M; Zheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3847-50. PubMed ID: 26737133
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Optical coherence elastography to evaluate depth-resolved elasticity of tissue.
    Yang C; Xiang Z; Li Z; Nan N; Wang X
    Opt Express; 2022 Mar; 30(6):8709-8722. PubMed ID: 35299317
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Travelling wave expansion: a model fitting approach to the inverse problem of elasticity reconstruction.
    Baghani A; Salcudean S; Honarvar M; Sahebjavaher RS; Rohling R; Sinkus R
    IEEE Trans Med Imaging; 2011 Aug; 30(8):1555-65. PubMed ID: 21813354
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 76. B-line Elastography Measurement of Lung Parenchymal Elasticity.
    Koda R; Taniguchi H; Konno K; Yamakoshi Y
    Ultrason Imaging; 2023 Jan; 45(1):30-41. PubMed ID: 36631936
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Delineating Corneal Elastic Anisotropy in a Porcine Model Using Noncontact OCT Elastography and Ex Vivo Mechanical Tests.
    Kirby MA; Pitre JJ; Liou HC; Li DS; Wang RK; Pelivanov I; O'Donnell M; Shen TT
    Ophthalmol Sci; 2021 Dec; 1(4):100058. PubMed ID: 36246948
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SWAVE Imaging of Placental Elasticity and Viscosity: Proof of Concept.
    Abeysekera JM; Ma M; Pesteie M; Terry J; Pugash D; Hutcheon JA; Mayer C; Lampe L; Salcudean S; Rohling R
    Ultrasound Med Biol; 2017 Jun; 43(6):1112-1124. PubMed ID: 28392000
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ex vivo and in vivo assessment of the non-linearity of elasticity properties of breast tissues for quantitative strain elastography.
    Umemoto T; Ueno E; Matsumura T; Yamakawa M; Bando H; Mitake T; Shiina T
    Ultrasound Med Biol; 2014 Aug; 40(8):1755-68. PubMed ID: 24802305
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In vivo evidence of porcine cornea anisotropy using supersonic shear wave imaging.
    Nguyen TM; Aubry JF; Fink M; Bercoff J; Tanter M
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(11):7545-52. PubMed ID: 25352119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.