These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 30514476)
1. Environmental and economic assessment of the use of biodrying before thermal treatment of municipal solid waste. Psaltis P; Komilis D Waste Manag; 2019 Jan; 83():95-103. PubMed ID: 30514476 [TBL] [Abstract][Full Text] [Related]
2. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Jeswani HK; Azapagic A Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085 [TBL] [Abstract][Full Text] [Related]
3. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland. Hupponen M; Grönman K; Horttanainen M Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556 [TBL] [Abstract][Full Text] [Related]
4. Reduction in greenhouse gas emissions from sludge biodrying instead of heat drying combined with mono-incineration in China. Liu HT; Wang YW; Liu XJ; Gao D; Zheng GD; Lei M; Guo GH; Zheng HX; Kong XJ J Air Waste Manag Assoc; 2017 Feb; 67(2):212-218. PubMed ID: 27629354 [TBL] [Abstract][Full Text] [Related]
5. Environmental impacts of cement kiln co-incineration sewage sludge biodried products in a scale-up trial. Yu B; Fu L; Chen T; Zheng G; Yang J; Cheng Y; Liu Y; Huang X Waste Manag; 2024 Apr; 177():24-33. PubMed ID: 38290345 [TBL] [Abstract][Full Text] [Related]
6. The study on biomass fraction estimate methodology of municipal solid waste incinerator in Korea. Kang S; Kim S; Lee J; Yun H; Kim KH; Jeon EC J Air Waste Manag Assoc; 2016 Oct; 66(10):971-7. PubMed ID: 27191178 [TBL] [Abstract][Full Text] [Related]
7. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand. Udomsri S; Martin AR; Fransson TH Waste Manag; 2010 Jul; 30(7):1414-22. PubMed ID: 20207531 [TBL] [Abstract][Full Text] [Related]
8. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061 [TBL] [Abstract][Full Text] [Related]
9. Pyrolysis technologies for municipal solid waste: a review. Chen D; Yin L; Wang H; He P Waste Manag; 2014 Dec; 34(12):2466-86. PubMed ID: 25256662 [TBL] [Abstract][Full Text] [Related]
10. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises. Tabata T Waste Manag Res; 2013 Nov; 31(11):1110-7. PubMed ID: 24025369 [TBL] [Abstract][Full Text] [Related]
11. Greenhouse gas emissions from MSW incineration in China: impacts of waste characteristics and energy recovery. Yang N; Zhang H; Chen M; Shao LM; He PJ Waste Manag; 2012 Dec; 32(12):2552-60. PubMed ID: 22796016 [TBL] [Abstract][Full Text] [Related]
12. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment. de Souza SN; Horttanainen M; Antonelli J; Klaus O; Lindino CA; Nogueira CE Waste Manag Res; 2014 Oct; 32(10):1015-23. PubMed ID: 25323146 [TBL] [Abstract][Full Text] [Related]
13. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy. Cimpan C; Wenzel H Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494 [TBL] [Abstract][Full Text] [Related]
14. Life cycle assessment of environmental impact on municipal solid waste incineration power generation. Liu D; Wang S; Xue R; Gao G; Zhang R Environ Sci Pollut Res Int; 2021 Dec; 28(46):65435-65446. PubMed ID: 34322797 [TBL] [Abstract][Full Text] [Related]
15. Energy recovery potential from incineration using municipal solid waste based on multi-scenario analysis in Beijing. Gu W; Liu D; Wang C Environ Sci Pollut Res Int; 2021 Jun; 28(21):27119-27131. PubMed ID: 33506413 [TBL] [Abstract][Full Text] [Related]
16. Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China. Wang Y; Zhang X; Liao W; Wu J; Yang X; Shui W; Deng S; Zhang Y; Lin L; Xiao Y; Yu X; Peng H Waste Manag; 2018 Jul; 77():252-267. PubMed ID: 29705047 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil. Medina Jimenez AC; Nordi GH; Palacios Bereche MC; Bereche RP; Gallego AG; Nebra SA Waste Manag Res; 2017 Nov; 35(11):1137-1148. PubMed ID: 28893135 [TBL] [Abstract][Full Text] [Related]
18. Effects of biodrying process on municipal solid waste properties. Tambone F; Scaglia B; Scotti S; Adani F Bioresour Technol; 2011 Aug; 102(16):7443-50. PubMed ID: 21664812 [TBL] [Abstract][Full Text] [Related]
19. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis. Liu Y; Sun W; Liu J Waste Manag; 2017 Oct; 68():653-661. PubMed ID: 28642075 [TBL] [Abstract][Full Text] [Related]
20. Biodrying of municipal solid waste-correlations between moisture content, organic content, and end of the biodrying process time. Bosilj D; Petrovic I; Hrncic N; Kaniski N Environ Sci Pollut Res Int; 2024 Mar; ():. PubMed ID: 38427175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]