These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 30514513)
1. Chemical classes targeting energy supplying GyrB domain of Mycobacterium tuberculosis. Kashyap A; Singh PK; Silakari O Tuberculosis (Edinb); 2018 Dec; 113():43-54. PubMed ID: 30514513 [TBL] [Abstract][Full Text] [Related]
2. In silico designing of domain B selective gyrase inhibitors for effective treatment of resistant tuberculosis. Kashyap A; Singh PK; Silakari O Tuberculosis (Edinb); 2018 Sep; 112():83-88. PubMed ID: 30205973 [TBL] [Abstract][Full Text] [Related]
3. Mycobacterium Tuberculosis (MTB) GyrB inhibitors: An attractive approach for developing novel drugs against TB. Chaudhari K; Surana S; Jain P; Patel HM Eur J Med Chem; 2016 Nov; 124():160-185. PubMed ID: 27569197 [TBL] [Abstract][Full Text] [Related]
4. Targeting DNA Gyrase to Combat Mycobacterium tuberculosis: An Update. Das S; Garg T; Srinivas N; Dasgupta A; Chopra S Curr Top Med Chem; 2019; 19(8):579-593. PubMed ID: 30834837 [TBL] [Abstract][Full Text] [Related]
5. DNA gyrase inhibition assays are necessary to demonstrate fluoroquinolone resistance secondary to gyrB mutations in Mycobacterium tuberculosis. Pantel A; Petrella S; Matrat S; Brossier F; Bastian S; Reitter D; Jarlier V; Mayer C; Aubry A Antimicrob Agents Chemother; 2011 Oct; 55(10):4524-9. PubMed ID: 21768507 [TBL] [Abstract][Full Text] [Related]
6. Pharmacophore modeling and molecular dynamics approach to identify putative DNA Gyrase B inhibitors for resistant tuberculosis. Kashyap A; Singh PK; Satpati S; Verma H; Silakari O J Cell Biochem; 2019 Mar; 120(3):3149-3159. PubMed ID: 30191589 [TBL] [Abstract][Full Text] [Related]
7. Characterization of gyrA and gyrB mutations associated with fluoroquinolone resistance in Mycobacterium tuberculosis isolates from Morocco. Chaoui I; Oudghiri A; El Mzibri M J Glob Antimicrob Resist; 2018 Mar; 12():171-174. PubMed ID: 29033301 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of fluoroquinolones induced resistance in DNA gyrase of Mycobacterium tuberculosis. Pandey B; Grover S; Tyagi C; Goyal S; Jamal S; Singh A; Kaur J; Grover A J Biomol Struct Dyn; 2018 Feb; 36(2):362-375. PubMed ID: 28071975 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. Chopra S; Matsuyama K; Tran T; Malerich JP; Wan B; Franzblau SG; Lun S; Guo H; Maiga MC; Bishai WR; Madrid PB J Antimicrob Chemother; 2012 Feb; 67(2):415-21. PubMed ID: 22052686 [TBL] [Abstract][Full Text] [Related]
10. Benzothiazinone-piperazine derivatives as efficient Mycobacterium tuberculosis DNA gyrase inhibitors. Chandran M; Renuka J; Sridevi JP; Pedgaonkar GS; Asmitha V; Yogeeswari P; Sriram D Int J Mycobacteriol; 2015 Jun; 4(2):104-15. PubMed ID: 26972878 [TBL] [Abstract][Full Text] [Related]
11. Role of gyrB Mutations in Pre-extensively and Extensively Drug-Resistant Tuberculosis in Thai Clinical Isolates. Disratthakit A; Prammananan T; Tribuddharat C; Thaipisuttikul I; Doi N; Leechawengwongs M; Chaiprasert A Antimicrob Agents Chemother; 2016 Sep; 60(9):5189-97. PubMed ID: 27297489 [TBL] [Abstract][Full Text] [Related]
12. Mycobacterium tuberculosis DNA gyrase as a target for drug discovery. Mdluli K; Ma Z Infect Disord Drug Targets; 2007 Jun; 7(2):159-68. PubMed ID: 17970226 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis in the alpha3alpha4 GyrA helix and in the Toprim domain of GyrB refines the contribution of Mycobacterium tuberculosis DNA gyrase to intrinsic resistance to quinolones. Matrat S; Aubry A; Mayer C; Jarlier V; Cambau E Antimicrob Agents Chemother; 2008 Aug; 52(8):2909-14. PubMed ID: 18426901 [TBL] [Abstract][Full Text] [Related]
14. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. Maruri F; Sterling TR; Kaiga AW; Blackman A; van der Heijden YF; Mayer C; Cambau E; Aubry A J Antimicrob Chemother; 2012 Apr; 67(4):819-31. PubMed ID: 22279180 [TBL] [Abstract][Full Text] [Related]
15. WQ-3810: A new fluoroquinolone with a high potential against fluoroquinolone-resistant Mycobacterium tuberculosis. Ouchi Y; Mukai T; Koide K; Yamaguchi T; Park JH; Kim H; Yokoyama K; Tamaru A; Gordon SV; Nakajima C; Suzuki Y Tuberculosis (Edinb); 2020 Jan; 120():101891. PubMed ID: 31778929 [TBL] [Abstract][Full Text] [Related]
17. The Molecular Genetics of Fluoroquinolone Resistance in Mycobacterium tuberculosis. Mayer C; Takiff H Microbiol Spectr; 2014 Aug; 2(4):MGM2-0009-2013. PubMed ID: 26104201 [TBL] [Abstract][Full Text] [Related]
18. gyrA/B fluoroquinolone resistance allele profiles amongst Mycobacterium tuberculosis isolates from mainland China. Long Q; Li W; Du Q; Fu Y; Liang Q; Huang H; Xie J Int J Antimicrob Agents; 2012 Jun; 39(6):486-9. PubMed ID: 22526012 [TBL] [Abstract][Full Text] [Related]
19. DNA topoisomerase I and DNA gyrase as targets for TB therapy. Nagaraja V; Godbole AA; Henderson SR; Maxwell A Drug Discov Today; 2017 Mar; 22(3):510-518. PubMed ID: 27856347 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis. Zhang YJ; Li XJ; Mi KX Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]