These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 30514808)
1. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Namkung Y; LeGouill C; Kumar S; Cao Y; Teixeira LB; Lukasheva V; Giubilaro J; Simões SC; Longpré JM; Devost D; Hébert TE; Piñeyro G; Leduc R; Costa-Neto CM; Bouvier M; Laporte SA Sci Signal; 2018 Dec; 11(559):. PubMed ID: 30514808 [TBL] [Abstract][Full Text] [Related]
2. Quantifying biased signaling in GPCRs using BRET-based biosensors. Namkung Y; Radresa O; Armando S; Devost D; Beautrait A; Le Gouill C; Laporte SA Methods; 2016 Jan; 92():5-10. PubMed ID: 25890247 [TBL] [Abstract][Full Text] [Related]
3. Angiotensin II type 1 receptor variants alter endosomal receptor-β-arrestin complex stability and MAPK activation. Cao Y; Kumar S; Namkung Y; Gagnon L; Cho A; Laporte SA J Biol Chem; 2020 Sep; 295(38):13169-13180. PubMed ID: 32703898 [TBL] [Abstract][Full Text] [Related]
4. Loss of biased signaling at a G protein-coupled receptor in overexpressed systems. Li A; Liu S; Huang R; Ahn S; Lefkowitz RJ PLoS One; 2023; 18(3):e0283477. PubMed ID: 36961836 [TBL] [Abstract][Full Text] [Related]
6. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET. Cao Y; Namkung Y; Laporte SA Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346 [TBL] [Abstract][Full Text] [Related]
7. Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer. Fillion D; Devost D; Hébert TE Methods Mol Biol; 2019; 1957():83-91. PubMed ID: 30919348 [TBL] [Abstract][Full Text] [Related]
8. Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context. Devost D; Sleno R; Pétrin D; Zhang A; Shinjo Y; Okde R; Aoki J; Inoue A; Hébert TE J Biol Chem; 2017 Mar; 292(13):5443-5456. PubMed ID: 28213525 [TBL] [Abstract][Full Text] [Related]
9. Unraveling allostery within the angiotensin II type 1 receptor for Gα Cao Y; van der Velden WJC; Namkung Y; Nivedha AK; Cho A; Sedki D; Holleran B; Lee N; Leduc R; Muk S; Le K; Bhattacharya S; Vaidehi N; Laporte SA Sci Signal; 2023 Aug; 16(797):eadf2173. PubMed ID: 37552769 [TBL] [Abstract][Full Text] [Related]
10. Allosteric modulation of β-arrestin-biased angiotensin II type 1 receptor signaling by membrane stretch. Tang W; Strachan RT; Lefkowitz RJ; Rockman HA J Biol Chem; 2014 Oct; 289(41):28271-83. PubMed ID: 25170081 [TBL] [Abstract][Full Text] [Related]
11. Monitoring TRPC7 Conformational Changes by BRET Following GPCR Activation. Pétigny C; Dumont AA; Giguère H; Collette A; Holleran BJ; Iftinca M; Altier C; Besserer-Offroy É; Auger-Messier M; Leduc R Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269644 [TBL] [Abstract][Full Text] [Related]
12. Label-free cell signaling pathway deconvolution of angiotensin type 1 receptor reveals time-resolved G-protein activity and distinct AngII and AngIIIIV responses. Lavenus S; Simard É; Besserer-Offroy É; Froehlich U; Leduc R; Grandbois M Pharmacol Res; 2018 Oct; 136():108-120. PubMed ID: 29959993 [TBL] [Abstract][Full Text] [Related]
13. Angiotensin type 1A receptor regulates β-arrestin binding of the β Tóth AD; Gyombolai P; Szalai B; Várnai P; Turu G; Hunyady L Mol Cell Endocrinol; 2017 Feb; 442():113-124. PubMed ID: 27908837 [TBL] [Abstract][Full Text] [Related]
14. Angiotensin II cyclic analogs as tools to investigate AT St-Pierre D; Cabana J; Holleran BJ; Besserer-Offroy É; Escher E; Guillemette G; Lavigne P; Leduc R Biochem Pharmacol; 2018 Aug; 154():104-117. PubMed ID: 29684376 [TBL] [Abstract][Full Text] [Related]
16. Differential β-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Zimmerman B; Beautrait A; Aguila B; Charles R; Escher E; Claing A; Bouvier M; Laporte SA Sci Signal; 2012 Apr; 5(221):ra33. PubMed ID: 22534132 [TBL] [Abstract][Full Text] [Related]
17. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins. Bedini A Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788 [TBL] [Abstract][Full Text] [Related]
18. Prostaglandin F2α and angiotensin II type 1 receptors exhibit differential cognate G protein coupling regulation. Sedki D; Cho A; Cao Y; Nikolajev L; Atmuri NDP; Lubell WD; Laporte SA J Biol Chem; 2022 Sep; 298(9):102294. PubMed ID: 35872018 [TBL] [Abstract][Full Text] [Related]
19. The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network. Kendall RT; Strungs EG; Rachidi SM; Lee MH; El-Shewy HM; Luttrell DK; Janech MG; Luttrell LM J Biol Chem; 2011 Jun; 286(22):19880-91. PubMed ID: 21502318 [TBL] [Abstract][Full Text] [Related]
20. The arrestin-selective angiotensin AT1 receptor agonist [Sar1,Ile4,Ile8]-AngII negatively regulates bradykinin B2 receptor signaling via AT1-B2 receptor heterodimers. Wilson PC; Lee MH; Appleton KM; El-Shewy HM; Morinelli TA; Peterson YK; Luttrell LM; Jaffa AA J Biol Chem; 2013 Jun; 288(26):18872-84. PubMed ID: 23661707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]