These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30514839)

  • 21. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collective motion of active Brownian particles with polar alignment.
    Martín-Gómez A; Levis D; Díaz-Guilera A; Pagonabarraga I
    Soft Matter; 2018 Apr; 14(14):2610-2618. PubMed ID: 29569673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active Brownian motion with memory delay induced by a viscoelastic medium.
    Sprenger AR; Bair C; Löwen H
    Phys Rev E; 2022 Apr; 105(4-1):044610. PubMed ID: 35590653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamics of a Brownian circle swimmer.
    van Teeffelen S; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):020101. PubMed ID: 18850771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Escape kinetics of self-propelled particles from a circular cavity.
    Debnath T; Chaudhury P; Mukherjee T; Mondal D; Ghosh PK
    J Chem Phys; 2021 Nov; 155(19):194102. PubMed ID: 34800947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stochastic thermodynamics of active Brownian particles.
    Ganguly C; Chaudhuri D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032102. PubMed ID: 24125209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Collective behavior of penetrable self-propelled rods in two dimensions.
    Abkenar M; Marx K; Auth T; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation.
    Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R
    Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noise and diffusion of a vibrated self-propelled granular particle.
    Walsh L; Wagner CG; Schlossberg S; Olson C; Baskaran A; Menon N
    Soft Matter; 2017 Dec; 13(47):8964-8968. PubMed ID: 29152630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of reorientation statistics on torque response of self-propelled particles.
    Hancock B; Baskaran A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052143. PubMed ID: 26651682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonequilibrium glassy dynamics of self-propelled hard disks.
    Berthier L
    Phys Rev Lett; 2014 Jun; 112(22):220602. PubMed ID: 24949749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of underdamped active particles in ratchet potentials.
    Ai BQ; Li FG
    Soft Matter; 2017 Mar; 13(13):2536-2542. PubMed ID: 28318005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory.
    Joo S; Durang X; Lee OC; Jeon JH
    Soft Matter; 2020 Oct; 16(40):9188-9201. PubMed ID: 32840541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Backward Finite-Time Lyapunov Exponents in Inertial Flows.
    Gunther T; Theisel H
    IEEE Trans Vis Comput Graph; 2017 Jan; 23(1):970-979. PubMed ID: 27875210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.
    Bodrova AS; Chechkin AV; Cherstvy AG; Safdari H; Sokolov IM; Metzler R
    Sci Rep; 2016 Jul; 6():30520. PubMed ID: 27462008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The nonequilibrium glassy dynamics of self-propelled particles.
    Flenner E; Szamel G; Berthier L
    Soft Matter; 2016 Sep; 12(34):7136-49. PubMed ID: 27499055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovering dynamic laws from observations: The case of self-propelled, interacting colloids.
    Ruiz-Garcia M; Barriuso G CM; Alexander LC; Aarts DGAL; Ghiringhelli LM; Valeriani C
    Phys Rev E; 2024 Jun; 109(6-1):064611. PubMed ID: 39020989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.
    Feng M; Hou Z
    Soft Matter; 2017 Jun; 13(25):4464-4481. PubMed ID: 28580481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-organized vortices of circling self-propelled particles and curved active flagella.
    Yang Y; Qiu F; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012720. PubMed ID: 24580270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling the structure and mixing properties of anisotropic active particles with the direction of self-propulsion.
    Martin RW; Zwanikken JW
    Soft Matter; 2019 Oct; 15(39):7757-7764. PubMed ID: 31482905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.