These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 30514952)
1. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Duan J; Feng G; Yu B; Li J; Chen M; Yang P; Feng J; Liu K; Zhou J Nat Commun; 2018 Dec; 9(1):5146. PubMed ID: 30514952 [TBL] [Abstract][Full Text] [Related]
2. Insight into the effect of the configuration entropy of additives on the Seebeck coefficient. Nandal V; Wei Q; Seki K Phys Chem Chem Phys; 2021 Jul; 23(27):14803-14810. PubMed ID: 34212162 [TBL] [Abstract][Full Text] [Related]
3. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Han Y; Zhang J; Hu R; Xu D Sci Adv; 2022 Feb; 8(7):eabl5318. PubMed ID: 35179966 [TBL] [Abstract][Full Text] [Related]
4. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation. Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634 [TBL] [Abstract][Full Text] [Related]
5. Highly Antifreezing Thermogalvanic Hydrogels for Human Heat Harvesting in Ultralow Temperature Environments. Zhang D; Zhou Y; Mao Y; Li Q; Liu L; Bai P; Ma R Nano Lett; 2023 Dec; 23(23):11272-11279. PubMed ID: 38038230 [TBL] [Abstract][Full Text] [Related]
6. Cellulose ionic conductor with tunable Seebeck coefficient for low-grade heat harvesting. Hu Y; Chen M; Qin C; Zhang J; Lu A Carbohydr Polym; 2022 Sep; 292():119650. PubMed ID: 35725205 [TBL] [Abstract][Full Text] [Related]
7. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels. Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217 [TBL] [Abstract][Full Text] [Related]
8. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992 [TBL] [Abstract][Full Text] [Related]
9. High Seebeck coefficient thermogalvanic cells Laws K; Buckingham MA; Farleigh M; Ma M; Aldous L Chem Commun (Camb); 2023 Feb; 59(16):2323-2326. PubMed ID: 36752070 [TBL] [Abstract][Full Text] [Related]
10. Stretchable and Durable Bacterial Cellulose-Based Thermocell with Improved Thermopower Density for Low-Grade Heat Harvesting. Wu Z; Wang B; Li J; Jia Y; Chen S; Wang H; Chen L; Shuai L Nano Lett; 2023 Nov; 23(22):10297-10304. PubMed ID: 37955657 [TBL] [Abstract][Full Text] [Related]
11. Ultra-high Seebeck coefficient of a thermal sensor through entropic optimisation of ligand length of Fe(ii) spin-crossover (SCO) materials. Che Hassan H; Mohd Said S; Nik Ibrahim NMJ; Megat Hasnan MMI; Mohd Noor IS; Zakaria R; Mohd Salleh MF; Md Noor NL; Abdullah N RSC Adv; 2021 Jun; 11(34):20970-20982. PubMed ID: 35479345 [TBL] [Abstract][Full Text] [Related]
12. Efficient Photo-Thermo-Electric Conversion Using Polyoxovanadate in Ionic Liquid for Low-Grade Heat Utilization. Wang Y; Liu C; Wang Y; Zhu C; Chen X; Liu B ChemSusChem; 2021 Dec; 14(24):5434-5441. PubMed ID: 34570434 [TBL] [Abstract][Full Text] [Related]
13. Thermoelectrochemical Cells Based on Ferricyanide/Ferrocyanide/Guanidinium: Application and Challenges. Jiang L; Kirihara K; Nandal V; Seki K; Mukaida M; Horike S; Wei Q ACS Appl Mater Interfaces; 2022 Jan; ():. PubMed ID: 35075902 [TBL] [Abstract][Full Text] [Related]
14. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. Lee CY; Hsu CC; Wang CH; Jeng US; Tung SH; Hu CC; Liu CL Small; 2024 Oct; ():e2407622. PubMed ID: 39358979 [TBL] [Abstract][Full Text] [Related]
15. Direct thermal charging cell for converting low-grade heat to electricity. Wang X; Huang YT; Liu C; Mu K; Li KH; Wang S; Yang Y; Wang L; Su CH; Feng SP Nat Commun; 2019 Sep; 10(1):4151. PubMed ID: 31515483 [TBL] [Abstract][Full Text] [Related]
16. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Yang P; Liu K; Chen Q; Mo X; Zhou Y; Li S; Feng G; Zhou J Angew Chem Int Ed Engl; 2016 Sep; 55(39):12050-3. PubMed ID: 27557890 [TBL] [Abstract][Full Text] [Related]
17. Seebeck, Peltier, and Soret effects: On different formalisms for transport equations in thermogalvanic cells. Kjelstrup S; Kristiansen KR; Gunnarshaug AF; Bedeaux D J Chem Phys; 2023 Jan; 158(2):020901. PubMed ID: 36641395 [TBL] [Abstract][Full Text] [Related]
18. Robust, Efficient, and Recoverable Thermocells with Zwitterion-Boosted Hydrogel Electrolytes for Energy-Autonomous and Wearable Sensing. Lu X; Mo Z; Liu Z; Hu Y; Du C; Liang L; Liu Z; Chen G Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405357. PubMed ID: 38682802 [TBL] [Abstract][Full Text] [Related]
19. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? Salez TJ; Huang BT; Rietjens M; Bonetti M; Wiertel-Gasquet C; Roger M; Filomeno CL; Dubois E; Perzynski R; Nakamae S Phys Chem Chem Phys; 2017 Apr; 19(14):9409-9416. PubMed ID: 28327718 [TBL] [Abstract][Full Text] [Related]
20. Wearable Device with High Thermoelectric Performance and Long-Lasting Usability Based on Gel-Thermocells for Body Heat Harvesting. Jia Y; Zhang S; Li J; Han Z; Zhang D; Qu X; Wu Z; Wang H; Chen S Small; 2024 Sep; ():e2401427. PubMed ID: 39285822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]