These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 30515453)
1. Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material. Wei S; Evenson Z; Stolpe M; Lucas P; Angell CA Sci Adv; 2018 Nov; 4(11):eaat8632. PubMed ID: 30515453 [TBL] [Abstract][Full Text] [Related]
2. Dynamic processes in a silicate liquid from above melting to below the glass transition. Nascimento ML; Fokin VM; Zanotto ED; Abyzov AS J Chem Phys; 2011 Nov; 135(19):194703. PubMed ID: 22112093 [TBL] [Abstract][Full Text] [Related]
3. The violation of the Stokes-Einstein relation in supercooled water. Chen SH; Mallamace F; Mou CY; Broccio M; Corsaro C; Faraone A; Liu L Proc Natl Acad Sci U S A; 2006 Aug; 103(35):12974-8. PubMed ID: 16920792 [TBL] [Abstract][Full Text] [Related]
4. Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover. Orava J; Weber H; Kaban I; Greer AL J Chem Phys; 2016 May; 144(19):194503. PubMed ID: 27208954 [TBL] [Abstract][Full Text] [Related]
5. Heterogeneous diffusion, viscosity, and the Stokes-Einstein relation in binary liquids. Schober HR; Peng HL Phys Rev E; 2016 May; 93(5):052607. PubMed ID: 27300951 [TBL] [Abstract][Full Text] [Related]
6. High temperature breakdown of the Stokes-Einstein relation in a computer simulated Cu-Zr melt. Han XJ; Li JG; Schober HR J Chem Phys; 2016 Mar; 144(12):124505. PubMed ID: 27036459 [TBL] [Abstract][Full Text] [Related]
7. Understanding the Origin of the Breakdown of the Stokes-Einstein Relation in Supercooled Water at Different Temperature-Pressure Conditions. Dubey V; Erimban S; Indra S; Daschakraborty S J Phys Chem B; 2019 Nov; 123(47):10089-10099. PubMed ID: 31702917 [TBL] [Abstract][Full Text] [Related]
8. Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water. Mazza MG; Giovambattista N; Stanley HE; Starr FW Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031203. PubMed ID: 17930235 [TBL] [Abstract][Full Text] [Related]
9. Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations. Sosso GC; Miceli G; Caravati S; Giberti F; Behler J; Bernasconi M J Phys Chem Lett; 2013 Dec; 4(24):4241-6. PubMed ID: 26296172 [TBL] [Abstract][Full Text] [Related]
10. Stokes-Einstein relation of the liquid metal rubidium and its relationship to changes in the microscopic dynamics with increasing temperature. Demmel F; Tani A Phys Rev E; 2018 Jun; 97(6-1):062124. PubMed ID: 30011507 [TBL] [Abstract][Full Text] [Related]
13. Breakdown of the Stokes-Einstein relation in supercooled water: the jump-diffusion perspective. Dubey V; Dueby S; Daschakraborty S Phys Chem Chem Phys; 2021 Sep; 23(36):19964-19986. PubMed ID: 34515269 [TBL] [Abstract][Full Text] [Related]
14. Resolving Crystallization Kinetics of GeTe Phase-Change Nanoparticles by Ultrafast Calorimetry. Chen B; de Wal D; Ten Brink GH; Palasantzas G; Kooi BJ Cryst Growth Des; 2018 Feb; 18(2):1041-1046. PubMed ID: 29445317 [TBL] [Abstract][Full Text] [Related]
15. Dynamical crossover and breakdown of the Stokes-Einstein relation in confined water and in methanol-diluted bulk water. Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Stanley HE; Chen SH J Phys Chem B; 2010 Feb; 114(5):1870-8. PubMed ID: 20058894 [TBL] [Abstract][Full Text] [Related]
16. Breakdown of the Stokes-Einstein relation in pure Lennard-Jones fluids: From gas to liquid via supercritical states. Ohtori N; Miyamoto S; Ishii Y Phys Rev E; 2017 May; 95(5-1):052122. PubMed ID: 28618549 [TBL] [Abstract][Full Text] [Related]
17. Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy. Pasturel A; Jakse N J Phys Condens Matter; 2016 Dec; 28(48):485101. PubMed ID: 27690250 [TBL] [Abstract][Full Text] [Related]
18. Viscous flow and jump dynamics in molecular supercooled liquids. I. Translations. De Michele C; Leporini D Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036701. PubMed ID: 11308796 [TBL] [Abstract][Full Text] [Related]
19. Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Chen SH; Stanley HE Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22457-62. PubMed ID: 21148100 [TBL] [Abstract][Full Text] [Related]
20. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. Jeyasingh R; Fong SW; Lee J; Li Z; Chang KW; Mantegazza D; Asheghi M; Goodson KE; Wong HS Nano Lett; 2014 Jun; 14(6):3419-26. PubMed ID: 24798660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]