These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 30515494)

  • 41. Interaction of 14-3-3ζ with microtubule-associated protein tau within Alzheimer's disease neurofibrillary tangles.
    Qureshi HY; Li T; MacDonald R; Cho CM; Leclerc N; Paudel HK
    Biochemistry; 2013 Sep; 52(37):6445-55. PubMed ID: 23962087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration.
    Hoozemans JJ; Scheper W
    Int J Biochem Cell Biol; 2012 Aug; 44(8):1295-8. PubMed ID: 22564438
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of key residues in the A-Raf kinase important for phosphoinositide lipid binding specificity.
    Johnson LM; James KM; Chamberlain MD; Anderson DH
    Biochemistry; 2005 Mar; 44(9):3432-40. PubMed ID: 15736953
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Following the leader: fibrillization of alpha-synuclein and tau.
    Frasier M; Wolozin B
    Exp Neurol; 2004 Jun; 187(2):235-9. PubMed ID: 15144849
    [No Abstract]   [Full Text] [Related]  

  • 45. Isotype-specific functions of Raf kinases.
    Hagemann C; Rapp UR
    Exp Cell Res; 1999 Nov; 253(1):34-46. PubMed ID: 10579909
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR).
    Zhou M; Horita DA; Waugh DS; Byrd RA; Morrison DK
    J Mol Biol; 2002 Jan; 315(3):435-46. PubMed ID: 11786023
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two phosphorylation-independent sites on the p85 SH2 domains bind A-Raf kinase.
    Fang Y; Johnson LM; Mahon ES; Anderson DH
    Biochem Biophys Res Commun; 2002 Feb; 290(4):1267-74. PubMed ID: 11812000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 14-3-3 proteins as potential therapeutic targets.
    Zhao J; Meyerkord CL; Du Y; Khuri FR; Fu H
    Semin Cell Dev Biol; 2011 Sep; 22(7):705-12. PubMed ID: 21983031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insight into conformational change for 14-3-3σ protein by molecular dynamics simulation.
    Hu G; Li H; Liu JY; Wang J
    Int J Mol Sci; 2014 Feb; 15(2):2794-810. PubMed ID: 24552877
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A solid-phase method for synthesis of dimeric and trimeric ligands: Identification of potent bivalent ligands of 14-3-3σ.
    Lee Y; Chung B; Ko D; Lim HS
    Bioorg Chem; 2019 Oct; 91():103141. PubMed ID: 31377386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Challenges of studying 14-3-3 protein-protein interactions with full-length protein partners.
    Somsen BA; Ottmann C
    Biophys J; 2022 Apr; 121(7):1115-1116. PubMed ID: 35320703
    [No Abstract]   [Full Text] [Related]  

  • 52. In Silico Studies on GCP-Lys-OMe as a Potential 14-3-3σ Homodimer Stabilizer.
    Aljabal G; Yap BK
    Pharmaceuticals (Basel); 2022 Oct; 15(10):. PubMed ID: 36297403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational model predicts protein binding sites of a luminescent ligand equipped with guanidiniocarbonyl-pyrrole groups.
    Rafieiolhosseini N; Killa M; Neumann T; Tötsch N; Grad JN; Höing A; Dirksmeyer T; Niemeyer J; Ottmann C; Knauer SK; Giese M; Voskuhl J; Hoffmann D
    Beilstein J Org Chem; 2022; 18():1322-1331. PubMed ID: 36225729
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evolution of Artificial Arginine Analogues-Fluorescent Guanidiniocarbonyl-Indoles as Efficient Oxo-Anion Binders.
    Sebena D; Rudolph K; Roy B; Wölper C; Nitschke T; Lampe S; Giese M; Voskuhl J
    Molecules; 2022 May; 27(9):. PubMed ID: 35566361
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Targeting the Surface of the Protein 14-3-3 by Ultrasmall (1.5 nm) Gold Nanoparticles Carrying the Specific Peptide CRaf.
    Ruks T; Loza K; Heggen M; Ottmann C; Bayer P; Beuck C; Epple M
    Chembiochem; 2021 Apr; 22(8):1456-1463. PubMed ID: 33275809
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NMR Spectroscopy of supramolecular chemistry on protein surfaces.
    Bayer P; Matena A; Beuck C
    Beilstein J Org Chem; 2020; 16():2505-2522. PubMed ID: 33093929
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new class of supramolecular ligands stabilizes 14-3-3 protein-protein interactions by up to two orders of magnitude.
    Gigante A; Grad JN; Briels J; Bartel M; Hoffmann D; Ottmann C; Schmuck C
    Chem Commun (Camb); 2018 Dec; 55(1):111-114. PubMed ID: 30515494
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multivalent Ligands with Tailor-Made Anion Binding Motif as Stabilizers of Protein-Protein Interactions.
    Bartsch L; Bartel M; Gigante A; Iglesias-Fernández J; Ruiz-Blanco YB; Beuck C; Briels J; Toetsch N; Bayer P; Sanchez-Garcia E; Ottmann C; Schmuck C
    Chembiochem; 2019 Dec; 20(23):2921-2926. PubMed ID: 31168888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3ζ dimer.
    Molzan M; Ottmann C
    J Mol Biol; 2012 Nov; 423(4):486-95. PubMed ID: 22922483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biophysical Characterization of Essential Phosphorylation at the Flexible C-Terminal Region of C-Raf with 14-3-3ζ Protein.
    Ghosh A; Ratha BN; Gayen N; Mroue KH; Kar RK; Mandal AK; Bhunia A
    PLoS One; 2015; 10(8):e0135976. PubMed ID: 26295714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.