BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30515592)

  • 1. The "independent breath" algorithm: assessment of oxygen uptake during exercise.
    Francescato MP; Cettolo V
    Eur J Appl Physiol; 2019 Feb; 119(2):495-508. PubMed ID: 30515592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breath-by-breath oxygen uptake during running: Effects of different calculation algorithms.
    Koschate J; Cettolo V; Hoffmann U; Francescato MP
    Exp Physiol; 2019 Dec; 104(12):1829-1840. PubMed ID: 31583757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interchangeability between two breath-by-breath O
    Francescato MP; Canciani M; Cettolo V
    Eur J Appl Physiol; 2020 Jun; 120(6):1417-1428. PubMed ID: 32306150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The algorithm used for the calculation of gas exchange affects the estimation of O
    Francescato MP; Cettolo V
    Exp Physiol; 2024 Mar; 109(3):393-404. PubMed ID: 37983192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of breath-by-breath alveolar gas exchange: an alternative view of the respiratory cycle.
    Cettolo V; Francescato MP
    Eur J Appl Physiol; 2015 Sep; 115(9):1897-904. PubMed ID: 25893561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing breath-by-breath alveolar gas exchange: is the contiguity in time of breaths mandatory?
    Cettolo V; Francescato MP
    Eur J Appl Physiol; 2018 Jun; 118(6):1119-1130. PubMed ID: 29546638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation algorithms for breath-by-breath alveolar gas exchange: the unknowns!
    Golja P; Cettolo V; Francescato MP
    Eur J Appl Physiol; 2018 Sep; 118(9):1869-1876. PubMed ID: 29938338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetries of oxygen uptake transients at the on- and offset of heavy exercise in humans.
    Paterson DH; Whipp BJ
    J Physiol; 1991 Nov; 443():575-86. PubMed ID: 1822539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation algorithms alter the breath-by-breath gas exchange values when abrupt changes in ventilation occur.
    Cettolo V; Francescato MP
    Clin Physiol Funct Imaging; 2018 May; 38(3):491-496. PubMed ID: 28574212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of breath-by-breath oxygen uptake determination on kinetics assessment during exercise.
    Gimenez P; Busso T
    Respir Physiol Neurobiol; 2008 Aug; 162(3):238-41. PubMed ID: 18682302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breath-to-breath "noise" in the ventilatory and gas exchange responses of children to exercise.
    Potter CR; Childs DJ; Houghton W; Armstrong N
    Eur J Appl Physiol Occup Physiol; 1999 Jul; 80(2):118-24. PubMed ID: 10408322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ventilatory responses in males and females during graded exercise with and without thoracic load carriage.
    Phillips DB; Ehnes CM; Stickland MK; Petersen SR
    Eur J Appl Physiol; 2019 Feb; 119(2):441-453. PubMed ID: 30515593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New acquisitions in the assessment of breath-by-breath alveolar gas transfer in humans.
    Cautero M; di Prampero PE; Capelli C
    Eur J Appl Physiol; 2003 Oct; 90(3-4):231-41. PubMed ID: 14517680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Fuzzy Kinetics Index: an indicator conflating cardiorespiratory kinetics during dynamic exercise.
    Drescher U
    Eur J Appl Physiol; 2021 May; 121(5):1349-1357. PubMed ID: 33598762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic asymmetry of phosphocreatine concentration and O(2) uptake between the on- and off-transients of moderate- and high-intensity exercise in humans.
    Rossiter HB; Ward SA; Kowalchuk JM; Howe FA; Griffiths JR; Whipp BJ
    J Physiol; 2002 Jun; 541(Pt 3):991-1002. PubMed ID: 12068057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central circulatory and peripheral O2 extraction changes as interactive facilitators of pulmonary O2 uptake during a repeated high-intensity exercise protocol in humans.
    Fukuba Y; Endo MY; Ohe Y; Hirotoshi Y; Kitano A; Shiragiku C; Miura A; Fukuda O; Ueoka H; Miyachi M
    Eur J Appl Physiol; 2007 Mar; 99(4):361-9. PubMed ID: 17165056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confidence intervals for the parameters estimated from simulated O2 uptake kinetics: effects of different data treatments.
    Francescato MP; Cettolo V; Bellio R
    Exp Physiol; 2014 Jan; 99(1):187-95. PubMed ID: 24121286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiorespiratory kinetics in exercise physiology: estimates and predictions using randomized changes in work rate.
    Hoffmann U; Faber F; Drescher U; Koschate J
    Eur J Appl Physiol; 2022 Mar; 122(3):717-726. PubMed ID: 34962595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Submaximal exercise cardiac output is increased by 4 weeks of sprint interval training in young healthy males with low initial Q̇-V̇O2: Importance of cardiac response phenotype.
    Bentley RF; Jones JH; Hirai DM; Zelt JT; Giles MD; Raleigh JP; Quadrilatero J; Gurd BJ; Neder JA; Tschakovsky ME
    PLoS One; 2019; 14(1):e0195458. PubMed ID: 30673702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moderate-Intensity Oxygen Uptake Kinetics: Is a Mono-Exponential Function Always Appropriate to Model the Response?
    Dale J; Glaister M
    Res Q Exerc Sport; 2018 Sep; 89(3):309-321. PubMed ID: 30071182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.