These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30515685)

  • 41. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.
    Shahid M; Shamshad S; Rafiq M; Khalid S; Bibi I; Niazi NK; Dumat C; Rashid MI
    Chemosphere; 2017 Jul; 178():513-533. PubMed ID: 28347915
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.
    Ma Y; Prasad MN; Rajkumar M; Freitas H
    Biotechnol Adv; 2011; 29(2):248-58. PubMed ID: 21147211
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phytoremediation of Heavy Metals Using Cotton Plant: A Field Analysis.
    Kaur R; Bhatti SS; Singh S; Singh J; Singh S
    Bull Environ Contam Toxicol; 2018 Nov; 101(5):637-643. PubMed ID: 30361750
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soil plant microbe interactions in phytoremediation.
    Karthikeyan R; Kulakow PA
    Adv Biochem Eng Biotechnol; 2003; 78():51-74. PubMed ID: 12674398
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multi-criteria decision analysis of optimal planting for enhancing phytoremediation of trace heavy metals in mining sites under interval residual contaminant concentrations.
    Lu J; Lu H; Li J; Liu J; Feng S; Guan Y
    Environ Pollut; 2019 Dec; 255(Pt 2):113255. PubMed ID: 31563784
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Contaminated soils salinity, a threat for phytoextraction?
    Sirguey C; Ouvrard S
    Chemosphere; 2013 Apr; 91(3):269-74. PubMed ID: 23245576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Secondary plant metabolites in phytoremediation and biotransformation.
    Singer AC; Crowley DE; Thompson IP
    Trends Biotechnol; 2003 Mar; 21(3):123-30. PubMed ID: 12628369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.
    Jing YD; He ZL; Yang XE
    J Zhejiang Univ Sci B; 2007 Mar; 8(3):192-207. PubMed ID: 17323432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plant uptake of elements in soil and pore water: field observations versus model assumptions.
    Raguž V; Jarsjö J; Grolander S; Lindborg R; Avila R
    J Environ Manage; 2013 Sep; 126():147-56. PubMed ID: 23722150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrokinetic-enhanced phytoremediation of soils: status and opportunities.
    Cameselle C; Chirakkara RA; Reddy KR
    Chemosphere; 2013 Oct; 93(4):626-36. PubMed ID: 23835413
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting arsenic bioavailability to hyperaccumulator Pteris vittata in arsenic-contaminated soils.
    Gonzaga MI; Ma LQ; Pacheco EP; dos Santos WM
    Int J Phytoremediation; 2012 Dec; 14(10):939-49. PubMed ID: 22908656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution and accumulation of selenium in wild plants growing naturally in the Gumuskoy (Kutahya) mining area, Turkey.
    Sasmaz M; Akgül B; Sasmaz A
    Bull Environ Contam Toxicol; 2015 May; 94(5):598-603. PubMed ID: 25800342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview.
    Yang H; Yang X; Ning Z; Kwon SY; Li ML; Tack FMG; Kwon EE; Rinklebe J; Yin R
    J Hazard Mater; 2022 Jan; 422():126876. PubMed ID: 34416699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytoremediation of Cadmium by Native Plants Grown on Mining Soil.
    Palutoglu M; Akgul B; Suyarko V; Yakovenko M; Kryuchenko N; Sasmaz A
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):293-297. PubMed ID: 29177694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Germanium in the soil-plant system-a review.
    Wiche O; Székely B; Moschner C; Heilmeier H
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):31938-31956. PubMed ID: 30218330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationships between soil parameters and physiological status of Miscanthus x giganteus cultivated on soil contaminated with trace elements under NPK fertilisation vs. microbial inoculation.
    Pogrzeba M; Rusinowski S; Sitko K; Krzyżak J; Skalska A; Małkowski E; Ciszek D; Werle S; McCalmont JP; Mos M; Kalaji HM
    Environ Pollut; 2017 Jun; 225():163-174. PubMed ID: 28365513
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
    Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review.
    Luo X; Bing H; Luo Z; Wang Y; Jin L
    Environ Pollut; 2019 Dec; 255(Pt 1):113138. PubMed ID: 31542662
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.