BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 30515709)

  • 1. A reproducible scaffold-free 3D organoid model to study neoplastic progression in breast cancer.
    Djomehri SI; Burman B; Gonzalez ME; Takayama S; Kleer CG
    J Cell Commun Signal; 2019 Mar; 13(1):129-143. PubMed ID: 30515709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MMTV-cre;Ccn6 knockout mice develop tumors recapitulating human metaplastic breast carcinomas.
    Martin EE; Huang W; Anwar T; Arellano-Garcia C; Burman B; Guan JL; Gonzalez ME; Kleer CG
    Oncogene; 2017 Apr; 36(16):2275-2285. PubMed ID: 27819674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matricellular CCN6 (WISP3) protein: a tumor suppressor for mammary metaplastic carcinomas.
    Tran MN; Kleer CG
    J Cell Commun Signal; 2018 Mar; 12(1):13-19. PubMed ID: 29357008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCN6 regulates IGF2BP2 and HMGA2 signaling in metaplastic carcinomas of the breast.
    McMullen ER; Gonzalez ME; Skala SL; Tran M; Thomas D; Djomehri SI; Burman B; Kidwell KM; Kleer CG
    Breast Cancer Res Treat; 2018 Dec; 172(3):577-586. PubMed ID: 30220054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Organoids Droplet-Based Staining Method for High-End 3D Imaging of Mammary Organoids.
    Sumbal J; Koledova Z
    Methods Mol Biol; 2022; 2471():259-269. PubMed ID: 35175602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks.
    Sumbal J; Budkova Z; Traustadóttir GÁ; Koledova Z
    J Mammary Gland Biol Neoplasia; 2020 Dec; 25(4):273-288. PubMed ID: 33210256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Decision Tree to Guide Human and Mouse Mammary Organoid Model Selection.
    Caruso M; Saberiseyedabad K; Mourao L; Scheele CLGJ
    Methods Mol Biol; 2024; 2764():77-105. PubMed ID: 38393590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The matricellular protein CCN6 differentially regulates mitochondrial metabolism in normal epithelium and in metaplastic breast carcinomas.
    Tran M; Leflein SA; Gonzalez ME; Kleer CG
    J Cell Commun Signal; 2022 Sep; 16(3):433-445. PubMed ID: 34811632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Status of Breast Organoid Models.
    Mohan SC; Lee TY; Giuliano AE; Cui X
    Front Bioeng Biotechnol; 2021; 9():745943. PubMed ID: 34805107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Coculture of Mammary Organoids with Fibrospheres: A Model for Studying Epithelial-Stromal Interactions During Mammary Branching Morphogenesis.
    Koledova Z
    Methods Mol Biol; 2017; 1612():107-124. PubMed ID: 28634938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform.
    Reid JA; Mollica PA; Bruno RD; Sachs PC
    Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells.
    Qu Y; Han B; Yu Y; Yao W; Bose S; Karlan BY; Giuliano AE; Cui X
    PLoS One; 2015; 10(7):e0131285. PubMed ID: 26147507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triple-negative breast cancer cells invade adipocyte/preadipocyte-encapsulating geometrically inverted mammary organoids.
    Mertz DR; Parigoris E; Sentosa J; Lee JH; Lee S; Kleer CG; Luker G; Takayama S
    Integr Biol (Camb); 2023 Apr; 15():. PubMed ID: 37015816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels.
    Mollica PA; Booth-Creech EN; Reid JA; Zamponi M; Sullivan SM; Palmer XL; Sachs PC; Bruno RD
    Acta Biomater; 2019 Sep; 95():201-213. PubMed ID: 31233891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mammary Organoid Model to Study Branching Morphogenesis.
    Caruso M; Huang S; Mourao L; Scheele CLGJ
    Front Physiol; 2022; 13():826107. PubMed ID: 35399282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cadmium Exposure Inhibits Branching Morphogenesis and Causes Alterations Consistent With HIF-1α Inhibition in Human Primary Breast Organoids.
    Rocco SA; Koneva L; Middleton LYM; Thong T; Solanki S; Karram S; Nambunmee K; Harris C; Rozek LS; Sartor MA; Shah YM; Colacino JA
    Toxicol Sci; 2018 Aug; 164(2):592-602. PubMed ID: 29741670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct transfection of clonal organoids in Matrigel microbeads: a promising approach toward organoid-based genetic screens.
    Laperrousaz B; Porte S; Gerbaud S; Härmä V; Kermarrec F; Hourtane V; Bottausci F; Gidrol X; Picollet-D'hahan N
    Nucleic Acids Res; 2018 Jul; 46(12):e70. PubMed ID: 29394376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of 2.5D organoid culture model using 3D bladder cancer organoid culture.
    Abugomaa A; Elbadawy M; Yamanaka M; Goto Y; Hayashi K; Mori T; Uchide T; Azakami D; Fukushima R; Yoshida T; Shibutani M; Yamashita R; Kobayashi M; Yamawaki H; Shinohara Y; Kaneda M; Usui T; Sasaki K
    Sci Rep; 2020 Jun; 10(1):9393. PubMed ID: 32523078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models.
    Tsai S; McOlash L; Palen K; Johnson B; Duris C; Yang Q; Dwinell MB; Hunt B; Evans DB; Gershan J; James MA
    BMC Cancer; 2018 Mar; 18(1):335. PubMed ID: 29587663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.
    Marti-Figueroa CR; Ashton RS
    Acta Biomater; 2017 May; 54():35-44. PubMed ID: 28315813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.