BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30516061)

  • 1. Clinical evaluation of the repeatability of ocular aberrometry obtained with a new pyramid wavefront sensor.
    Plaza-Puche AB; Salerno LC; Versaci F; Romero D; Alio JL
    Eur J Ophthalmol; 2019 Nov; 29(6):585-592. PubMed ID: 30516061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeatability of a Commercially Available Adaptive Optics Visual Simulator and Aberrometer in Normal and Keratoconic Eyes.
    Shetty R; Kochar S; Grover T; Khamar P; Kusumgar P; Sainani K; Sinha Roy A
    J Refract Surg; 2017 Nov; 33(11):769-772. PubMed ID: 29117417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeatability of pyramidal aberrometer measurements in keratoconus and normal eyes.
    Ibrahim P; Assaf JF; Bejjani R; Torbey J; Yehia M; Bahir Al-Ulloom S; Awwad ST
    J Cataract Refract Surg; 2024 Jul; 50(7):739-745. PubMed ID: 38480607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a Clinical Aberrometer Using Pyramidal Wavefront Sensing.
    Singh NK; Jaskulski M; Ramasubramanian V; Meyer D; Reed O; Rickert ME; Bradley A; Kollbaum PS
    Optom Vis Sci; 2019 Oct; 96(10):733-744. PubMed ID: 31592956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeatability of aberrometric measurements with a new instrument for vision analysis based on adaptive optics.
    Otero C; Vilaseca M; Arjona M; Martínez-Roda JA; Pujol J
    J Refract Surg; 2015 Mar; 31(3):188-94. PubMed ID: 25751836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeatability of Wavefront Aberration Measurements With a Placido-Based Topographer in Normal and Keratoconic Eyes.
    Ortiz-Toquero S; Rodriguez G; de Juan V; Martin R
    J Refract Surg; 2016 May; 32(5):338-44. PubMed ID: 27163620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repeatability of aberrometric measurements in normal and keratoconus eyes using a new Scheimpflug-Placido topographer.
    Bayhan HA; Aslan Bayhan S; Muhafız E; Can I
    J Cataract Refract Surg; 2014 Feb; 40(2):269-75. PubMed ID: 24368115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of trifocal intraocular lenses on standard autorefraction and aberrometer-based autorefraction.
    Garzón N; García-Montero M; López-Artero E; Poyales F; Albarrán-Diego C
    J Cataract Refract Surg; 2019 Sep; 45(9):1265-1274. PubMed ID: 31326229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ocular aberrations measured by a Fourier-based Hartmann-Shack and Zernike-based Tscherning aberrometer before and after laser in situ keratomileusis.
    Sáles CS; Manche EE
    J Cataract Refract Surg; 2015 Sep; 41(9):1820-5. PubMed ID: 26603389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocular higher-order aberrations in myopia and skiascopic wavefront repeatability.
    Zadok D; Levy Y; Segal O; Barkana Y; Morad Y; Avni I
    J Cataract Refract Surg; 2005 Jun; 31(6):1128-32. PubMed ID: 16039485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeatability of topographic and aberrometric measurements at different accommodative states using a combined topographer and open-view aberrometer.
    Gabriel C; Klaproth OK; Titke C; Baumeister M; Bühren J; Kohnen T
    J Cataract Refract Surg; 2015 Apr; 41(4):806-11. PubMed ID: 25840305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precision of a commercial hartmann-shack aberrometer: limits of total wavefront laser vision correction.
    López-Miguel A; Maldonado MJ; Belzunce A; Barrio-Barrio J; Coco-Martín MB; Nieto JC
    Am J Ophthalmol; 2012 Nov; 154(5):799-807.e5. PubMed ID: 22902046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeatability of measurements obtained with a ray tracing aberrometer.
    Piñero DP; Sánchez-Pérez PJ; Alió JL
    Optom Vis Sci; 2011 Sep; 88(9):1099-105. PubMed ID: 21666525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision and agreement of higher order aberrations measured with ray tracing and Hartmann-Shack aberrometers.
    Xu Z; Hua Y; Qiu W; Li G; Wu Q
    BMC Ophthalmol; 2018 Jan; 18(1):18. PubMed ID: 29374460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical behavior of the eye implanted with extreme intraocular lens powers.
    Oliveira RF; Salerno LC; Mimouni M; Plaza-Puche AB; Alió JL
    J Cataract Refract Surg; 2019 Aug; 45(8):1113-1118. PubMed ID: 31126783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision of higher-order aberration measurements with a new Placido-disk topographer and Hartmann-Shack wavefront sensor.
    López-Miguel A; Martínez-Almeida L; González-García MJ; Coco-Martín MB; Sobrado-Calvo P; Maldonado MJ
    J Cataract Refract Surg; 2013 Feb; 39(2):242-9. PubMed ID: 23142546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyramidal Aberrometry in Wavefront-Guided Myopic LASIK.
    Frings A; Hassan H; Allan BD
    J Refract Surg; 2020 Jul; 36(7):442-448. PubMed ID: 32644166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeatability of internal aberrometry with a new simultaneous capture aberrometer/corneal topographer.
    Gifford P; Swarbrick HA
    Optom Vis Sci; 2012 Jun; 89(6):929-38. PubMed ID: 22543999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeatability of i.Profiler for measuring wavefront aberrations in healthy eyes.
    Liao X; Wang MJ; Tan QQ; Lan CJ
    Int Ophthalmol; 2022 Aug; 42(8):2525-2531. PubMed ID: 35381898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serial measurements of accommodation by open-field Hartmann-Shack wavefront aberrometer in eyes with accommodative spasm.
    Kanda H; Kobayashi M; Mihashi T; Morimoto T; Nishida K; Fujikado T
    Jpn J Ophthalmol; 2012 Nov; 56(6):617-23. PubMed ID: 23008062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.