These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30516237)

  • 1. Isotopic labelling in ethylene oligomerization: addressing the issue of 1-octene vs. 1-hexene selectivity.
    Hirscher NA; Labinger JA; Agapie T
    Dalton Trans; 2018 Dec; 48(1):40-44. PubMed ID: 30516237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic studies of olefin and alkyne trimerization with chromium catalysts: deuterium labeling and studies of regiochemistry using a model chromacyclopentane complex.
    Agapie T; Labinger JA; Bercaw JE
    J Am Chem Soc; 2007 Nov; 129(46):14281-95. PubMed ID: 17973377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Density Functional Study on Ethylene Trimerization and Tetramerization Using Real Sasol Cr-PNP Catalysts.
    Cheong M; Singh A
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DFT Mechanistic Study on Ethylene Tri- and Tetramerization with Cr/PNP Catalysts: Single versus Double Insertion Pathways.
    Britovsek GJ; McGuinness DS
    Chemistry; 2016 Nov; 22(47):16891-16896. PubMed ID: 27723144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylene tetramerization: a new route to produce 1-octene in exceptionally high selectivities.
    Bollmann A; Blann K; Dixon JT; Hess FM; Killian E; Maumela H; McGuinness DS; Morgan DH; Neveling A; Otto S; Overett M; Slawin AM; Wasserscheid P; Kuhlmann S
    J Am Chem Soc; 2004 Nov; 126(45):14712-3. PubMed ID: 15535683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2D-QSPR/DFT studies of aryl-substituted PNP-Cr-based catalyst systems for highly selective ethylene oligomerization.
    Tang S; Liu Z; Zhan X; Cheng R; He X; Liu B
    J Mol Model; 2014 Mar; 20(3):2129. PubMed ID: 24554126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by alkenylphosphanyl PNP ligands.
    Zhou T; Zuo J; Xie H; Zhao X; Zhao MX; Zhang J
    Dalton Trans; 2024 Aug; 53(33):14011-14017. PubMed ID: 39105496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Branched α-Olefins via Trimerization and Tetramerization of Ethylene.
    Lukas F; Simon PA; Dietel T; Kretschmer WP; Kempe R
    Adv Sci (Weinh); 2024 Oct; 11(38):e2405653. PubMed ID: 39120450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium Catalysts for Selective Ethylene Oligomerization Featuring Binuclear PNP Ligands.
    Meng X; Ding Z; Gao H; Ma Z; Pan L; Wang B; Li Y
    Molecules; 2024 May; 29(9):. PubMed ID: 38731648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium Ethylene Tri-/Tetramerization Catalysts Supported by Iminophosphine Ligands.
    Zhao X; Wang J; Liu D; Kong W; Zhang J
    ACS Omega; 2023 Sep; 8(38):34549-34556. PubMed ID: 37780000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative mechanistic concept for homogeneous selective ethylene oligomerization of chromium-based catalysts: binuclear metallacycles as a reason for 1-octene selectivity?
    Peitz S; Aluri BR; Peulecke N; Müller BH; Wöhl A; Müller W; Al-Hazmi MH; Mosa FM; Rosenthal U
    Chemistry; 2010 Jul; 16(26):7670-6. PubMed ID: 20572185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly active chromium-based selective ethylene tri-/tetramerization catalysts supported by PNPO phosphazane ligands.
    Zhou Y; Wu H; Xu S; Zhang X; Shi M; Zhang J
    Dalton Trans; 2015 May; 44(20):9545-50. PubMed ID: 25919568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic investigations of the ethylene tetramerisation reaction.
    Overett MJ; Blann K; Bollmann A; Dixon JT; Haasbroek D; Killian E; Maumela H; McGuinness DS; Morgan DH
    J Am Chem Soc; 2005 Aug; 127(30):10723-30. PubMed ID: 16045361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic oligomerization of ethylene to higher linear alpha-olefins promoted by the cationic group 4 [(eta 5-Cp-(CMe2-bridge)-Ph)MII(ethylene)2]+ (M = Ti, Zr, Hf) active catalysts: a density functional investigation of the influence of the metal on the catalytic activity and selectivity.
    Tobisch S; Ziegler T
    J Am Chem Soc; 2004 Jul; 126(29):9059-71. PubMed ID: 15264839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCNCP ligands in the chromium-catalyzed oligomerization of ethylene: tri- versus tetramerization.
    Klemps C; Payet E; Magna L; Saussine L; Le Goff XF; Le Floch P
    Chemistry; 2009 Aug; 15(33):8259-68. PubMed ID: 19609997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Cr(III)-SNS complexes and their use as highly efficient catalysts for the trimerization of ethylene to 1-hexene.
    McGuinness DS; Wasserscheid P; Keim W; Morgan D; Dixon JT; Bollmann A; Maumela H; Hess F; Englert U
    J Am Chem Soc; 2003 May; 125(18):5272-3. PubMed ID: 12720428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylene tri-/tetramerization catalysts supported by diphosphinothiophene ligands.
    Zhang C; Song L; Wu H; Ji X; Jiao J; Zhang J
    Dalton Trans; 2017 Jul; 46(26):8399-8404. PubMed ID: 28621351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational study of the effect of confinement within microporous structures on the activity and selectivity of metallocene catalysts for ethylene oligomerization.
    Toulhoat H; Fomena ML; de Bruin T
    J Am Chem Soc; 2011 Mar; 133(8):2481-91. PubMed ID: 21302923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-mechanical transition-state model combined with machine learning provides catalyst design features for selective Cr olefin oligomerization.
    Maley SM; Kwon DH; Rollins N; Stanley JC; Sydora OL; Bischof SM; Ess DH
    Chem Sci; 2020 Aug; 11(35):9665-9674. PubMed ID: 34094231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylene tri- and tetramerization: a steric parameter selectivity switch from X-ray crystallography and computational analysis.
    Cloete N; Visser HG; Engelbrecht I; Overett MJ; Gabrielli WF; Roodt A
    Inorg Chem; 2013 Mar; 52(5):2268-70. PubMed ID: 23394516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.