These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30517041)

  • 1. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
    Gambrill AC; Faulkner RL; McKeown CR; Cline HT
    J Neurophysiol; 2019 Jan; 121(1):306-320. PubMed ID: 30517041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of multisensory convergence in the Xenopus optic tectum.
    Deeg KE; Sears IB; Aizenman CD
    J Neurophysiol; 2009 Dec; 102(6):3392-404. PubMed ID: 19793878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for the cytoplasmic polyadenylation element in NMDA receptor-regulated mRNA translation in neurons.
    Wells DG; Dong X; Quinlan EM; Huang YS; Bear MF; Richter JD; Fallon JR
    J Neurosci; 2001 Dec; 21(24):9541-8. PubMed ID: 11739565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cellular mechanism for inverse effectiveness in multisensory integration.
    Truszkowski TL; Carrillo OA; Bleier J; Ramirez-Vizcarrondo CM; Felch DL; McQuillan M; Truszkowski CP; Khakhalin AS; Aizenman CD
    Elife; 2017 Mar; 6():. PubMed ID: 28315524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles.
    Bestman JE; Lee-Osbourne J; Cline HT
    J Comp Neurol; 2012 Feb; 520(2):401-33. PubMed ID: 22113462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in
    Huang LC; McKeown CR; He HY; Ta AC; Cline HT
    Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2316542121. PubMed ID: 38198524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of the NMDAR co-agonist D-serine on the structure and function of optic tectal neurons in the developing visual system.
    Chorghay Z; Li VJ; Schohl A; Ghosh A; Ruthazer ES
    Sci Rep; 2023 Aug; 13(1):13383. PubMed ID: 37591903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Interactions between Newborn and Mature Neurons Leading to Integration into Established Neuronal Circuits.
    Boulanger-Weill J; Candat V; Jouary A; Romano SA; Pérez-Schuster V; Sumbre G
    Curr Biol; 2017 Jun; 27(12):1707-1720.e5. PubMed ID: 28578928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the visual experience-dependent nascent proteome in neuronal plasticity.
    Liu HH; McClatchy DB; Schiapparelli L; Shen W; Yates JR; Cline HT
    Elife; 2018 Feb; 7():. PubMed ID: 29412139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-Dependent Structural Plasticity in the Visual System.
    Berry KP; Nedivi E
    Annu Rev Vis Sci; 2016 Oct; 2():17-35. PubMed ID: 28532358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience-dependent neural plasticity in the adult damaged brain.
    Kerr AL; Cheng SY; Jones TA
    J Commun Disord; 2011; 44(5):538-48. PubMed ID: 21620413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of Visual Function and Cortical Connectivity After Ischemic Injury Through NeuroD1-Mediated Gene Therapy.
    Tang Y; Wu Q; Gao M; Ryu E; Pei Z; Kissinger ST; Chen Y; Rao AK; Xiang Z; Wang T; Li W; Chen G; Chubykin AA
    Front Cell Dev Biol; 2021; 9():720078. PubMed ID: 34490268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflections of experience-expectant development in repair of the adult damaged brain.
    Jones TA; Jefferson SC
    Dev Psychobiol; 2011 Jul; 53(5):466-75. PubMed ID: 21678394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Integration of Newborn Neurons in the Zebrafish Optic Tectum.
    Boulanger-Weill J; Sumbre G
    Front Cell Dev Biol; 2019; 7():57. PubMed ID: 31058148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental loss of NMDA receptors results in supernumerary forebrain neurons through delayed maturation of transit-amplifying neuroblasts.
    Napoli AJ; Laderwager S; Zoodsma JD; Biju B; Mucollari O; Schubel SK; Aprea C; Sayed A; Morgan K; Napoli A; Flanagan S; Wollmuth LP; Sirotkin HI
    Sci Rep; 2024 Feb; 14(1):3395. PubMed ID: 38336823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of NMDA receptors in adult neurogenesis: an ontogenetic (re)view on activity-dependent development.
    Platel JC; Kelsch W
    Cell Mol Life Sci; 2013 Oct; 70(19):3591-601. PubMed ID: 23397131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Recombinant Rabies Virus to Xenopus Tadpole Brain.
    Faulkner RL; Wall NR; Callaway EM; Cline HT
    eNeuro; 2021 Jun; 8(4):. PubMed ID: 34099488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Knockdown of NeuroD2 leads to seizure-like behavior, brain neuronal hyperactivity and a leaky blood-brain barrier in a Xenopus laevis tadpole model of DEE75.
    Banerjee S; Szyszka P; Beck CW
    Genetics; 2024 Jul; 227(3):. PubMed ID: 38788202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of astrocyte-mediated plasticity in neural circuit development and function.
    Perez-Catalan NA; Doe CQ; Ackerman SD
    Neural Dev; 2021 Jan; 16(1):1. PubMed ID: 33413602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotransmitters and motor activity: effects on functional recovery after brain injury.
    Goldstein LB
    NeuroRx; 2006 Oct; 3(4):451-7. PubMed ID: 17012058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.