These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30517691)

  • 1. Detection in Italy of a porcine Enterococcus faecium isolate carrying the novel phenicol-oxazolidinone-tetracycline resistance gene poxtA.
    Brenciani A; Fioriti S; Morroni G; Cucco L; Morelli A; Pezzotti G; Paniccià M; Antonelli A; Magistrali CF; Rossolini GM; Giovanetti E
    J Antimicrob Chemother; 2019 Mar; 74(3):817-818. PubMed ID: 30517691
    [No Abstract]   [Full Text] [Related]  

  • 2. Detection of the phenicol-oxazolidinone-tetracycline resistance gene poxtA in Enterococcus faecium and Enterococcus faecalis of food-producing animal origin in China.
    Lei CW; Kang ZZ; Wu SK; Chen YP; Kong LH; Wang HN
    J Antimicrob Chemother; 2019 Aug; 74(8):2459-2461. PubMed ID: 31106347
    [No Abstract]   [Full Text] [Related]  

  • 3. Detection in Greece of a clinical Enterococcus faecium isolate carrying the novel oxazolidinone resistance gene poxtA.
    Papagiannitsis CC; Tsilipounidaki K; Malli E; Petinaki E
    J Antimicrob Chemother; 2019 Aug; 74(8):2461-2462. PubMed ID: 31009054
    [No Abstract]   [Full Text] [Related]  

  • 4. Clonal spread and horizontal transfer mediate dissemination of phenicol-oxazolidinone-tetracycline resistance gene poxtA in enterococci isolates from a swine farm in China.
    Lei CW; Chen X; Liu SY; Li TY; Chen Y; Wang HN
    Vet Microbiol; 2021 Nov; 262():109219. PubMed ID: 34500344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.
    Kang ZZ; Lei CW; Kong LH; Wang YL; Ye XL; Ma BH; Wang XC; Li C; Zhang Y; Wang HN
    J Glob Antimicrob Resist; 2019 Dec; 19():333-337. PubMed ID: 31136832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of plasmid-mediated oxazolidinone resistance gene poxtA from CC17 Enterococcus faecium of pig origin.
    Huang J; Wang M; Gao Y; Chen L; Wang L
    J Antimicrob Chemother; 2019 Sep; 74(9):2524-2530. PubMed ID: 31236590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection in Italy of two clinical Enterococcus faecium isolates carrying both the oxazolidinone and phenicol resistance gene optrA and a silent multiresistance gene cfr.
    Brenciani A; Morroni G; Vincenzi C; Manso E; Mingoia M; Giovanetti E; Varaldo PE
    J Antimicrob Chemother; 2016 Apr; 71(4):1118-9. PubMed ID: 26702919
    [No Abstract]   [Full Text] [Related]  

  • 8. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin.
    Wang Y; Lv Y; Cai J; Schwarz S; Cui L; Hu Z; Zhang R; Li J; Zhao Q; He T; Wang D; Wang Z; Shen Y; Li Y; Feßler AT; Wu C; Yu H; Deng X; Xia X; Shen J
    J Antimicrob Chemother; 2015 Aug; 70(8):2182-90. PubMed ID: 25977397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses.
    Na SH; Moon DC; Choi MJ; Oh SJ; Jung DY; Kang HY; Hyun BH; Lim SK
    Int J Food Microbiol; 2019 Mar; 293():53-59. PubMed ID: 30640000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevalence and Characteristics of Phenicol-Oxazolidinone Resistance Genes in
    Kim E; Shin SW; Kwak HS; Cha MH; Yang SM; Gwak YS; Woo GJ; Kim HY
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fattening Pigs Are a Reservoir of Florfenicol-Resistant Enterococci Harboring Oxazolidinone Resistance Genes.
    Nüesch-Inderbinen M; Haussmann A; Treier A; Zurfluh K; Biggel M; Stephan R
    J Food Prot; 2022 May; 85(5):740-746. PubMed ID: 35258564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of linezolid-resistant Enterococcus faecium during treatment of enterococcal infections.
    Bassetti M; Farrel PA; Callan DA; Topal JE; Dembry LM
    Int J Antimicrob Agents; 2003 Jun; 21(6):593-4. PubMed ID: 12791477
    [No Abstract]   [Full Text] [Related]  

  • 13. Antimicrobial susceptibility of enterococci recovered from healthy cattle, pigs and chickens in nine EU countries (EASSA Study) to critically important antibiotics.
    de Jong A; Simjee S; Garch FE; Moyaert H; Rose M; Youala M; Dry M;
    Vet Microbiol; 2018 Mar; 216():168-175. PubMed ID: 29519512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linezolid-resistant Enterococcus faecium isolated from a patient without prior exposure to an oxazolidinone: report from the SENTRY Antimicrobial Surveillance Program.
    Jones RN; Della-Latta P; Lee LV; Biedenbach DJ
    Diagn Microbiol Infect Dis; 2002 Feb; 42(2):137-9. PubMed ID: 11858910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nationwide Surveillance of Novel Oxazolidinone Resistance Gene optrA in Enterococcus Isolates in China from 2004 to 2014.
    Cui L; Wang Y; Lv Y; Wang S; Song Y; Li Y; Liu J; Xue F; Yang W; Zhang J
    Antimicrob Agents Chemother; 2016 Dec; 60(12):7490-7493. PubMed ID: 27645239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of linezolid resistance in Enterococcus faecium not dependent on linezolid treatment.
    Bonora MG; Ligozzi M; Luzzani A; Solbiati M; Stepan E; Fontana R
    Eur J Clin Microbiol Infect Dis; 2006 Mar; 25(3):197-8. PubMed ID: 16498524
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark.
    Aarestrup FM; Agerso Y; Gerner-Smidt P; Madsen M; Jensen LB
    Diagn Microbiol Infect Dis; 2000 Jun; 37(2):127-37. PubMed ID: 10863107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin.
    Antonelli A; D'Andrea MM; Brenciani A; Galeotti CL; Morroni G; Pollini S; Varaldo PE; Rossolini GM
    J Antimicrob Chemother; 2018 Jul; 73(7):1763-1769. PubMed ID: 29635422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial resistance of Escherichia coli and Enterococcus spp. isolated from Estonian cattle and swine from 2010 to 2015.
    Aasmäe B; Häkkinen L; Kaart T; Kalmus P
    Acta Vet Scand; 2019 Jan; 61(1):5. PubMed ID: 30665443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine.
    Amachawadi RG; Giok F; Shi X; Soto J; Narayanan SK; Tokach MD; Apley MD; Nagaraja TG
    J Anim Sci; 2018 Apr; 96(3):912-920. PubMed ID: 29584914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.