These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30517747)

  • 1. Allele-specific genome editing using CRISPR-Cas9 is associated with loss of heterozygosity in diploid yeast.
    Gorter de Vries AR; Couwenberg LGF; van den Broek M; de la Torre Cortés P; Ter Horst J; Pronk JT; Daran JG
    Nucleic Acids Res; 2019 Feb; 47(3):1362-1372. PubMed ID: 30517747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis.
    Lombardi L; Bergin SA; Ryan A; Zuniga-Soto E; Butler G
    mSphere; 2022 Dec; 7(6):e0039322. PubMed ID: 36416551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient SSA-mediated precise genome editing using CRISPR/Cas9.
    Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z
    FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
    Nakajima K; Zhou Y; Tomita A; Hirade Y; Gurumurthy CB; Nakada S
    Genome Res; 2018 Feb; 28(2):223-230. PubMed ID: 29273627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli.
    Nødvig CS; Hoof JB; Kogle ME; Jarczynska ZD; Lehmbeck J; Klitgaard DK; Mortensen UH
    Fungal Genet Biol; 2018 Jun; 115():78-89. PubMed ID: 29325827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-Homology-Mediated CRISPR/Cas9-Based Method for Genome Editing in Fission Yeast.
    Hayashi A; Tanaka K
    G3 (Bethesda); 2019 Apr; 9(4):1153-1163. PubMed ID: 30755408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. POLQ suppresses interhomolog recombination and loss of heterozygosity at targeted DNA breaks.
    Davis L; Khoo KJ; Zhang Y; Maizels N
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22900-22909. PubMed ID: 32873648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequent loss of heterozygosity in CRISPR-Cas9-edited early human embryos.
    Alanis-Lobato G; Zohren J; McCarthy A; Fogarty NME; Kubikova N; Hardman E; Greco M; Wells D; Turner JMA; Niakan KK
    Proc Natl Acad Sci U S A; 2021 Jun; 118(22):. PubMed ID: 34050011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving CRISPR-Cas9 mediated genome integration in interspecific hybrid yeasts.
    Bennis NX; Kostanjšek M; van den Broek M; Daran JG
    N Biotechnol; 2023 Sep; 76():49-62. PubMed ID: 37028644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR base editors: genome editing without double-stranded breaks.
    Eid A; Alshareef S; Mahfouz MM
    Biochem J; 2018 Jun; 475(11):1955-1964. PubMed ID: 29891532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zebrafish Genome Engineering Using the CRISPR-Cas9 System.
    Li M; Zhao L; Page-McCaw PS; Chen W
    Trends Genet; 2016 Dec; 32(12):815-827. PubMed ID: 27836208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrate CRISPR/Cas9 for protein expression of HLA-B*38:68Q via precise gene editing.
    Yin Y; Reed EF; Zhang Q
    Sci Rep; 2019 May; 9(1):8067. PubMed ID: 31147565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-mediated correction of human genetic disease.
    Men K; Duan X; He Z; Yang Y; Yao S; Wei Y
    Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.