These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30518048)

  • 1. High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors.
    Yang W; Li Y; Feng Y
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30518048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modified Activation Process for Supercapacitor Electrode Materials from African Maize Cob.
    Kigozi M; Kali R; Bello A; Padya B; Kalu-Uka GM; Wasswa J; Jain PK; Onwualu PA; Dzade NY
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33261206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor.
    Shu Y; Bai Q; Fu G; Xiong Q; Li C; Ding H; Shen Y; Uyama H
    Carbohydr Polym; 2020 Jan; 227():115346. PubMed ID: 31590873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated Carbons From Winemaking Biowastes for Electrochemical Double-Layer Capacitors.
    Alcaraz L; Adán-Más A; Arévalo-Cid P; Montemor MF; López FA
    Front Chem; 2020; 8():686. PubMed ID: 32923425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Specific Capacitance Electrode Material for Supercapacitors Based on Resin-Derived Nitrogen-Doped Porous Carbons.
    Yu J; Fu N; Zhao J; Liu R; Li F; Du Y; Yang Z
    ACS Omega; 2019 Oct; 4(14):15904-15911. PubMed ID: 31592460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications.
    Young C; Park T; Yi JW; Kim J; Hossain MSA; Kaneti YV; Yamauchi Y
    ChemSusChem; 2018 Oct; 11(20):3546-3558. PubMed ID: 30156750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-Assisted Thermal Treatment of Electrode Materials for Electrochemical Double-Layer Capacitors.
    Gentile M; Bellani S; Zappia MI; Gamberini A; Mastronardi V; Abruzzese M; Gabatel L; Pasquale L; Marras S; Bagheri A; Beydaghi H; Papadopoulou EL; Lanzani G; Bonaccorso F
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13706-13718. PubMed ID: 38458613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode.
    Hao P; Zhao Z; Tian J; Li H; Sang Y; Yu G; Cai H; Liu H; Wong CP; Umar A
    Nanoscale; 2014 Oct; 6(20):12120-9. PubMed ID: 25201446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water.
    Feng C; Chen YA; Yu CP; Hou CH
    Chemosphere; 2018 Oct; 208():285-293. PubMed ID: 29883863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitin based heteroatom-doped porous carbon as electrode materials for supercapacitors.
    Zhou J; Bao L; Wu S; Yang W; Wang H
    Carbohydr Polym; 2017 Oct; 173():321-329. PubMed ID: 28732872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors.
    Wan L; Wang J; Xie L; Sun Y; Li K
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15583-96. PubMed ID: 25137068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
    Dang YQ; Ren SZ; Liu G; Cai J; Zhang Y; Qiu J
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing the quinonyl groups and structural defects in carbon for supercapacitor and capacitive deionization applications.
    Ma R; Luo W; Yan L; Guo C; Ding X; Gong X; Jia D; Xu M; Ai L; Guo N; Wang L
    J Colloid Interface Sci; 2023 Sep; 645():685-693. PubMed ID: 37167917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in surface chemistry of carbon materials upon electrochemical measurements and their effects on capacitance in acidic and neutral electrolytes.
    Hulicova-Jurcakova D; Fiset E; Lu GQ; Bandosz TJ
    ChemSusChem; 2012 Nov; 5(11):2188-99. PubMed ID: 23086734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Surface Tailoring Oxygen Functional Groups on Carbon Spheres for Capacitive Mechanistic Study.
    Zhang D; Wang J; He C; Wang Y; Guan T; Zhao J; Qiao J; Li K
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13214-13224. PubMed ID: 30888151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance.
    Zhao Y; Ran W; He J; Song Y; Zhang C; Xiong DB; Gao F; Wu J; Xia Y
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1132-9. PubMed ID: 25531022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen and Phosphorus Co-doped Porous Carbon for High-Performance Supercapacitors.
    Zhou J; Ye S; Zeng Q; Yang H; Chen J; Guo Z; Jiang H; Rajan K
    Front Chem; 2020; 8():105. PubMed ID: 32154218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors.
    Li GR; Feng ZP; Ou YN; Wu D; Fu R; Tong YX
    Langmuir; 2010 Feb; 26(4):2209-13. PubMed ID: 20067294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H
    Breitenbach S; Duchoslav J; Mardare AI; Unterweger C; Stifter D; Hassel AW; Fürst C
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.