These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30518091)

  • 61. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.
    Wen T; Wang R; Sotero A; Li Y
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28846643
    [No Abstract]   [Full Text] [Related]  

  • 62. Development of a Novel, Rapid Multiplex Polymerase Chain Reaction Assay for the Detection and Differentiation of Salmonella enterica Serovars Enteritidis and Typhimurium Using Ultra-Fast Convection Polymerase Chain Reaction.
    Kim TH; Hwang HJ; Kim JH
    Foodborne Pathog Dis; 2017 Oct; 14(10):580-586. PubMed ID: 28696782
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Detection of Escherichia coli O157:H7 and Salmonella enterica serotype Typhimurium based on cell elongation induced by beta-lactam antibiotics.
    Jia M; Liu Z; Wu C; Zhang Z; Ma L; Lu X; Mao Y; Zhang H
    Analyst; 2019 Aug; 144(15):4505-4512. PubMed ID: 31225571
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sensitive and rapid visual detection of Salmonella Typhimurium in milk based on recombinase polymerase amplification with lateral flow dipsticks.
    Hu J; Huang R; Sun Y; Wei X; Wang Y; Jiang C; Geng Y; Sun X; Jing J; Gao H; Wang Z; Dong C
    J Microbiol Methods; 2019 Mar; 158():25-32. PubMed ID: 30703446
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dual recognition strategy and magnetic enrichment based lateral flow assay toward Salmonella enteritidis detection.
    Bu T; Yao X; Huang L; Dou L; Zhao B; Yang B; Li T; Wang J; Zhang D
    Talanta; 2020 Jan; 206():120204. PubMed ID: 31514833
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A multimetallic nanozyme enhanced colorimetric biosensor for Salmonella detection on finger-actuated microfluidic chip.
    Jiang F; Jin N; Wang L; Wang S; Li Y; Lin J
    Food Chem; 2024 Jul; 460(Pt 1):140488. PubMed ID: 39043075
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment.
    Luo M; Li M; Jiang S; Shao H; Razal J; Wang D; Fang J
    J Hazard Mater; 2020 Jan; 381():120947. PubMed ID: 31394395
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker.
    Liu Y; Chen J; Du M; Wang X; Ji X; He Z
    Biosens Bioelectron; 2017 Jun; 92():68-73. PubMed ID: 28187301
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapid and ultrasensitive Salmonella Typhimurium quantification using positive dielectrophoresis driven on-line enrichment and fluorescent nanoparticleslabel.
    He X; Hu C; Guo Q; Wang K; Li Y; Shangguan J
    Biosens Bioelectron; 2013 Apr; 42():460-6. PubMed ID: 23238319
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bioprobes Based on Aptamer and Silica Fluorescent Nanoparticles for Bacteria Salmonella typhimurium Detection.
    Wang QY; Kang YJ
    Nanoscale Res Lett; 2016 Dec; 11(1):150. PubMed ID: 26983430
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen.
    Muniandy S; Dinshaw IJ; Teh SJ; Lai CW; Ibrahim F; Thong KL; Leo BF
    Anal Bioanal Chem; 2017 Nov; 409(29):6893-6905. PubMed ID: 29030671
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A rapid method for screening for Salmonella typhimurium in a chicken cecal microbial consortium using gene amplification.
    Pillai SD; Ricke SC; Nisbet DJ; Corrier DE; DeLoach JR
    Avian Dis; 1994; 38(3):598-604. PubMed ID: 7832714
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Detection of Salmonella typhimurium using an electrochemical immunosensor.
    Salam F; Tothill IE
    Biosens Bioelectron; 2009 Apr; 24(8):2630-6. PubMed ID: 19233634
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Functionalized polymeric magnetic nanoconstructs for selective capturing and sensitive detection of Salmonella typhimurium.
    Chattopadhyay S; Kaur A; Jain S; Sabharwal PK; Singh H
    Anal Chim Acta; 2016 Sep; 937():127-35. PubMed ID: 27590554
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Salmonella Typhimurium from pork.
    Techathuvanan C; Draughon FA; D'Souza DH
    J Food Sci; 2010 Apr; 75(3):M165-72. PubMed ID: 20492306
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels.
    Duan N; Wu S; Yu Y; Ma X; Xia Y; Chen X; Huang Y; Wang Z
    Anal Chim Acta; 2013 Dec; 804():151-8. PubMed ID: 24267076
    [TBL] [Abstract][Full Text] [Related]  

  • 77. An Improved Ultrasensitive Enzyme-Linked Immunosorbent Assay Using Hydrangea-Like Antibody-Enzyme-Inorganic Three-in-One Nanocomposites.
    Wei T; Du D; Zhu MJ; Lin Y; Dai Z
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6329-35. PubMed ID: 26894752
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Electrochemical immunoassay for Salmonella Typhimurium based on magnetically collected Ag-enhanced DNA biobarcode labels.
    Pratiwi FW; Rijiravanich P; Somasundrum M; Surareungchai W
    Analyst; 2013 Sep; 138(17):5011-8. PubMed ID: 23833764
    [TBL] [Abstract][Full Text] [Related]  

  • 79. One-step sensitive detection of Salmonella typhimurium by coupling magnetic capture and fluorescence identification with functional nanospheres.
    Wen CY; Hu J; Zhang ZL; Tian ZQ; Ou GP; Liao YL; Li Y; Xie M; Sun ZY; Pang DW
    Anal Chem; 2013 Jan; 85(2):1223-30. PubMed ID: 23256523
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing.
    Cheon HJ; Adhikari MD; Chung M; Tran TD; Kim J; Kim MI
    Adv Healthc Mater; 2019 May; 8(9):e1801507. PubMed ID: 30848070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.