These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30518092)

  • 1. Nanoclay Intercalation During Foaming of Polymeric Nanocomposites Studied in-Situ by Synchrotron X-Ray Diffraction.
    Bernardo V; Mugica M; Perez-Tamarit S; Notario B; Jimenez C; Rodriguez-Perez MA
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30518092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion and reaggregation of nanoparticles in the polypropylene copolymer foamed by supercritical carbon dioxide.
    Oh K; Seo YP; Hong SM; Takahara A; Lee KH; Seo Y
    Phys Chem Chem Phys; 2013 Jul; 15(26):11061-9. PubMed ID: 23715076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of nanoclay and SEBS-g-MA on the morphology and properties of immiscible poly(methyl methacrylate)/polystyrene blend.
    Mallick S; Khatua BB
    J Nanosci Nanotechnol; 2011 Feb; 11(2):979-86. PubMed ID: 21456127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films.
    Sabetzadeh M; Bagheri R; Masoomi M
    Carbohydr Polym; 2016 May; 141():75-81. PubMed ID: 26876998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oil-based mud waste reclamation and utilisation in low-density polyethylene composites.
    Siddique S; Yates K; Matthews K; Csetenyi LJ; Njuguna J
    Waste Manag Res; 2020 Dec; 38(12):1331-1344. PubMed ID: 32720590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Nanofillers Based on Cetyltrimethylammonium-Modified Clays in a Polypropylene Nanocomposite.
    Ryu HJ; Hang NT; Rejinold N S; Jeong B; Choi G; Choy JH
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36236057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of highly exfoliated polyester-clay nanocomposites: process-property correlations.
    Dalir H; Farahani RD; Nhim V; Samson B; Lévesque M; Therriault D
    Langmuir; 2012 Jan; 28(1):791-803. PubMed ID: 22087630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable shape memory behavior of polymer with surface modification of nanoparticles.
    Biswas A; Aswal VK; Maiti P
    J Colloid Interface Sci; 2019 Nov; 556():147-158. PubMed ID: 31445444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure.
    Marras SI; Kladi KP; Tsivintzelis I; Zuburtikudis I; Panayiotou C
    Acta Biomater; 2008 May; 4(3):756-65. PubMed ID: 18294944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and properties of polypropylene/clay nanocomposites for food packaging.
    Choi RN; Cheigh CI; Lee SY; Chung MS
    J Food Sci; 2011 Oct; 76(8):N62-7. PubMed ID: 22417600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study on the Oxygen Permeability Behavior of Nanoclay in a Polypropylene/Nanoclay Nanocomposite by Biaxial Stretching.
    Jung BN; Jung HW; Kang DH; Kim GH; Shim JK
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apple peel and carboxymethylcellulose-based nanocomposite films containing different nanoclays.
    Shin SH; Kim SJ; Lee SH; Park KM; Han J
    J Food Sci; 2014 Mar; 79(3):E342-53. PubMed ID: 24484358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of nanoclay and surfactant from polymer-clay nanocomposites into a food simulant.
    Xia Y; Rubino M; Auras R
    Environ Sci Technol; 2014 Dec; 48(23):13617-24. PubMed ID: 25369541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Injection Molding Process Parameters on the Chemical Foaming Behavior of Polypropylene and Polystyrene.
    Chung CY; Hwang SS; Chen SC; Lai MC
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Organomontmorillonite-Cloisite
    Jesus CRN; Molina EF; de Oliveira R; Pulcinelli SH; Santilli CV
    Pharmaceutics; 2022 Dec; 15(1):. PubMed ID: 36678662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PMMA/double-modified organoclay nanocomposites as fillers for denture base materials with improved mechanical properties.
    Shakeri F; Nodehi A; Atai M
    J Mech Behav Biomed Mater; 2019 Feb; 90():11-19. PubMed ID: 30342275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Organically-Modified Montmorillonite and Synthesized Layered Silica Nanoparticles on the Properties of Polypropylene and Polyamide-6 Nanocomposites.
    Gómez M; Palza H; Quijada R
    Polymers (Basel); 2016 Oct; 8(11):. PubMed ID: 30974661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.
    Mainil M; Alexandre M; Monteverde F; Dubois P
    J Nanosci Nanotechnol; 2006 Feb; 6(2):337-44. PubMed ID: 16573030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Preparation of Lightweight Natural Rubber Nanocomposite Foams with High Wear Resistance.
    Jin H; Deng F
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of carbon nanofibre-reinforced polypropylene foams.
    Antunes M; Velasco JI; Realinho V; Arencón D
    J Nanosci Nanotechnol; 2010 Feb; 10(2):1241-50. PubMed ID: 20352783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.